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'This technical tepoit n r. et of lecture notes for a course taught

by OLio aut er. e~'-'rp th),e spring of N985, to e1'gp '1tx i i. the Flight

Lyi l.z'rst-rr1 qrnd students at the t4t- Tr,-ce -itstitute of

lechnology. The iit -.r tlhfr rniurre was to famillnri{%f the w:crkirgPE

-rswith sorre of~ O1,P ePcrI;r'its iii the area of robust

vi i ivaiabie control theory that rie-ecrrpd in the past 10 years.

Tc. t-he krowlecie of the atrrtfb&'e is no textbook or single relpcrtro

in 1ccy; i terature covering all. the rin, t T-4 , rrrtained In thi s

-1t. ('upiasis or this report (and Hie. crurr') iF r-n robuistress

Pral".piq and dopf,.r '-Jr.7fques for multiple-input, rtuit4-le-outpit

rort-n" .~z1ci._ (barptei 2 is divided into twc. p'r.The first part

'Ives the rt-rE', rri rrtleematical background, iticltXing the notion of

sinpiilar vaoi'e-.. - , ti~e second part, some of thp reqi:Ire. fiirdau'entals

jfrom lirear sx-stErrr thrccr, are reviewed. Chapter discusses robustness

M r711,0 - L c.- j, 'e~r the information abou. tic Tp'rrr :,rd the

rrrt c'.. Tle concepts of singular vaiucc o're used In Chapter 4 to

OPedine good i~i~~'~ citrc'] loop shapes; per To-1incec llrn1.tltins

fr r~ t;:i systems are discussed i. Chapter % The material

discirseed in CbaTpt--:m A iut _5 is independent of the tecln~iucp.#- t h,-t

one mn~y use' ii. dcrl''ng the controllers.

"lie remainder ,,f ! rrprrt* rrrrertrqtes on develr~p 4 rg zire ip'.i',Ing

th~I iecr(t.~ t 'ati- (2aisslan with Torr 'r,-rari- Pecovery (LQC,/LTR)

tiethodology, whiIc,,L,. (IT!( 'trtla rohust cont~rl df's'git ittlea.

ii t r-l~id Ic hnqed iipon opr 4
Trra' crtrrn tli'orv, a brief review

t i.Eicessary key cwI.ct-p,: ir; f;
4 "Er ir ChApter A, The iindeplvh~j 4c1VL



of LQG/LTR are explained in Chapters ' and 8. Chapters 9 and ;, uttilIte

the background material from Chapters 4-F and formally present the

LQG/LTR methodology. A method of matching the singular values of the

loop transfer matrix and a formal procednre for loop shaping ar-

discussed in Chapter 11. The mathematical relationship between the

LOC/LTR method and L2/H2 optimization Is explained In detail I, r1apter .. :

12. Several controllers are designed for lateral attitude control of a

drone aircraft using LQG/LTR methodology in Chapter 13. Sumr.-rv and

conclusions are contained in Chapter 14.

The material contained in Chapters 3 and 13 Is claimed to he the ,*.

original work of the authors and their colleagues. The rest of the

material in this report was collected anO compiled from varloius icurnal -

artlcles, conference papers, and textbooks. The reference material that

was used in preparing a particular chapter is given at the end of each

chapter. It is needless to say that there are numerour other -

publications in this area of controls research that are not broug ht up

in this report.

in preparing this report, specia] emphasis was placed on using a

uniform notation. This report is only intended to serve as ar

Introduction to the topic of robust multivarlable control. It is tiot

possible to treat each And every design method and analysis tco in this

Area of research comprehensively in a single report. Finally, even

though most of the material in this report comes from publications of W 1

various researchers, the authors accept responsihlity for any

Inaccuracies in this report. -. sA..-.
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2. MAITFATTCAL PRELIMINARIES AFl) INTPOD CTTON

TO LINEAR SYSTEMS

1-' dJ1-!re this chapter into two sections, the first on ranhematical.

preliinaries and the secont4 an introeduction to linear systems. These ..%6U

sectionF- ore by no moavs comprehensive. We have made an attempt toU

cover elrost all the prerequisites that one needs to follow the rest of

the cbapters. Tn the first section we explain the properties of ratri-

ces, eigenvalues, elpenvectors, singular values, sirpular vectors and

norMS of vectors and matrices. Tn the second section we explain sore of

the 1-o-<c linear systems analysis tools both in the tIn-c and frequency

dopiiinf- . There is no Fsingle textbook that- gives all the Information

Kcontained in thip chapter. We have used several texts and iournal

papers in preparing this raterial. A list of these references and a few

rnther snggested readings are given at the end of this chapter.

2.1 tiatliematiel Prelimilnaries

Pr~ncpil Pagonl conistsof rb m e eementasquoff

L-la?,-irl Vnrx qatratiin-hchalelmnt.f

Determinant -denoted by drTMl or IMI, dt.finition given in

anv lircny algebra bce1k.

Firgular matrly a square matri7 whose determlnant is zero.

2-
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Minor - the minor M of a square matriy M is the determinant

formed after the Ith row and jth column are deleted from M.

Principal Minor - a minor whose diagonal elements are also

diagonal elements of the original matrix.

Cofactor - a signed minor given bv

: li (-1)~I+i '""
.:-( -1 -.-. .

Adjoint Matrix - the adioint of M, denoted by adiJM !, It the

transpose of the cofactor matrix. The cofactor matrix is formed h,

replacing each element of M by its cofactor.

Inverse Matrix - inverse of H is denoted by 1!-  ha., tb(

property M = M, = 1, and is given by

MI = adIIM]/ I M (2.3)

Rank of a Matrix - the rank r of a matrix 11 (not necesqaii~v

square) is the order of the largest Pquare array contained In V which

has nonzero determinant.

Transpose of a Matrix -denoted by 1!,it Is the ori 'ina'

matrix with its rows and columns interchanged, i.e. T'. = in..-

Symmetric Matrix a matrix contairing only rpe 1 
(e1ie r t

, MT.
which satisfies M =

Transpose of a product of matrices -

T T T
(AR) R A .4)

Inverse of a produrt of matrices-

(AB) ~B 1  (2.5)

(Complex) Conjugate - the coniugate of a scalar a = ( j? '.

al =a.-4P The conjugate of a vector or matrix simplv icplaces eo .  "

element of the vector or matrix with its ronlitipat., denrotod hy w. +

Permitlan matrix - a matrix which sat1sfieF

2-2



M =MN (2. 6)

where st'perscript lt stands for lPermite. The operation of Hermite is

s;inplv complex conjugate transposition -usually, *is, used In place of -4

Unitar~1 -1 fIT I

Unitary -itrlx -a romplex matrix Ui is uvitarv i

T
Orthogonal Matrix -a rea) iatrlx P is orthopor'l1 if R=

?-.1-- Elgenvalues nnd Figenvectors

Tetr A he an (ny~matrix, and v. he an (rv.!) vector. The

eig env alu e problem is

I'1-Al v = 0 (2.7)

Solution of

detr ).l-A) 0 (2.8)

gives relegenvalur .,X~..... X n. (iven Xthe noni-trivial solution

V of (0.7) iscldi' nei~evctI.W a refer to v1V...Vas

I

Arighit elgenvectors. Thiese are said to lie In the null space of the

ratr~-: r X - Al. Thc eigenvectors obtainee from

TfX.T-Al= (.9

are ref'vired to as let eigenvectors. Left and right cigenvocters are

orthopc! a1 to eacir other, that IF,

(C for I j(.]C

tfh-eigenrpe'o of A are tnt thun A can he written As

A T T 1  211

vldru~' is a diayon;,l rimtri), containing tlhe eigevaluec . This is

cal I t r cIgerve t oi lj-om(JsrtI on (TAVP) . T i (:a! led? n, Y~rodce riatrix.
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The columns of T are the right elgenveetors v ant the rows of T P,

the left elgenvectors w. Thus

T-r vI.v ] T T T

Note that (2.10) is true since we know T T T. .IndInr 'P for th,, case

of repeated eigenvalues is omitted here (for more information see ,.
r:'-1 1). -

Some properties of eigenvalues

I. All the elgenvalues of a Hermitian matrir are real.

2. All the efgenvalues of a unitary matrix have unif magnitiee.

3. If a matrix A is Herritian, then the morial matrix T in (2.11)

Is unitary. EVP Is then

A = U A IT  (.1

sinceP -  U

4. If A iF: P ermitifa, then

min x-. A-

M 0Xmin(A (2. 13)

and
H

max xA - (A)
x#0max (2 14)'O x x

H
The quantity X r Is called the Rayleigh',: ruotient. Sonct imes we

X x
are not interested In the complete solution o" t~x eigenve1 iie prol-lr-

(I.e. all the cigenvalueF rnd elgenvectors). '!If r~nv want an (:2tjmate Lof

the first mode. One of the nice properties of Rvyleigh's quotient i .-

that It Is never smaller than A rn(A). Also, tee minimum of the Ioft-

hand side of (.13) is achieved when Y Is tbe cfpenvectov corresnolndiig

tc A fmilarlv, the maxlmmm is achieved Ir (".Ilj) whcii : i. rht_

eigenvector corresponding to X (A). Eq (2.13) is pirtAcularlv useful
max

2-4
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in tie modal anal-sis of structures represented by finite element

models.

.owe more properties (see Ref f2-121)

Tf A is (rxim) and B is (mwn) , then .* %

B Is (nxn) and is singular if n>m (2.15)

If A is (nrm), P is (mxp) and C is (pxn), then t-.

iC' is (nxn) and Is singular if n >v or n >p (2.16)

A is singukal iff X (A) = 0 for some 1 (2.17)

4. X(A) = I/ (A-) (2.18)

. ( etA) - a X(A) , ct is scalar (2.19)

,. X(T+A) -1 (A) (2.20)

J..-

-Some useful matrix Identities (see Ref ,,-131

I + C G P 1 - C C = C ri + C if H I-
" n '2 1 2 1 2 1 2 1 2 1

CC- r +-

= C 21? B[T + H c c 1 1 ! c 9C (2.21)
>1 "~ p 1 2 1 2 1 1

ht re G is (myr) C, Is (nytri, It I iS (pxT), and 112 is (rxp) .

For tOr following three identities, the dimensions of natrices P, V, and

C arc: I is (nxu), V" is (nxr) and C is (rxn)

(P- c = P - Pl,(1 0 CP) Cp (2.22)

. (T + YCP) - i - K(T + CPK) 1CP (2.23)

' (T TKC) -- T - PK(T + CPK) C (2.24)

:.f-4 Defiiteness cf ':atrices

If -J the real parts of tf.c elenvalucs of mqtr-', A. are >0, then A is

soJ i:. he positive definite.

,I the real parts of the elgenvalues of matrix A ar( >Vl, then A it.

"d id t, hE. po;itive .sc',itceftnite.

2-5
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,.% .b

If all the real parts of the eigenvalues of -A ar( >0, then A if; stid to

be negative definite.

Tf all the real parts of the eigenvalues of -A arc 0, then A ifc c'-fd to

be negative semidefinite.

If some of the real parts ot the elgenvnlues of A anr positiv- -irf Come

negative, then A is said to be indefinite.

V2.1-5 Singular values

Let us first define inner product and norms of vectors.

Inner Product - The inner product Is also called a scalar (or clt;

product since It yields a scalar function. The inner product of cn-rplex

vectors x and y is defined by

T T<x,y> (x*) T V=y x* = *
y = yx*= x +*y, x2 *y2 +E. +n Xn i= 2.

where (.)* indicates complex conjugate of the vector in parenthc.is.

If x and v are real, then
n

<xxy> V +...+Y, (? +X".26)
I=, I 1 1 2- rnn

Note that when Y and y are complex <xv> yT v*  However, when x and v

are real

-. <Yy> XV = v x <VX>

Form or Length of a vector - The length of a vector x i:; cr'l1e flt-.

Fuclidean norm and is (also known as -2 norr

IxIIF = 1x1 2  - -, 1 + X +. * x.P
11F 11 2 n

Definition of spectral norm or norm of a .atriy Is piven bv

n-x iAx 12

11 Al12 x#O 11x1)2  where A, C (...

It turns out that

l2 = max '( ) , I-,2,...,r
2

(AA) =J,2,...,m 7'.3rV

. . ...--
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Note that A A and AA are Hermitian and positive setidefInite and hence

eiif'rva.lues of . A ard AA are always real and non-negative. If A Is

non.pr ,ular, A A Is positive definite, and the elgervalues of A A and

AA 1 rre q1l positive.

Ile now Introduce the rotion of singular values of complex matrices.

ThEre are denoted by the symbol a . If A Fl fnl, then

Ui(A) = XJ A) = X1(AAT >) P tl , n (2.31)

nan thy' are all non-negative since A A and AA are Fermitlan.

V A Is non-soure, i.e., AC C x n , then

0.() (AA) X (7.3)

for ' . 1,, where k n number of singular values = min(m.n) and

Ci (A) >, j(A) Y... ->k(A). Fror: (2.30) and (2.31), we have

( i [HIA, 2  (2.33)

It con he shown that

0 ( m2(2.3)

pr,,vieod A eylsts. Thuii the maximum sIngular value of A, 0 (A) Ismax =

siply the spectral norm of A. The epectrvl norm of A IF the Inver: .-

n 1 (A), the minimtm singular value of A. The spectral norm is also

1. -wr as the e, norm. 1usu,11v we will write 5(A) and 2(0) to indicate

G A) ond a (A).

max m"

It rfolnwr tthat

Ua . 0 ! 1~ /i('(.35)

0.(1  ~ ~ II A (2.36)ti n 'm x...,

(A) = if A is ,irgilar. (2.37)
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Let us now Introduce the SIT) uiar vnalue decomposition (svfD. civen

any (nxn) complex matrix A, there exist unitarv matrices IT and curiib

that

whee Eis digon mtrx ctaning the singular values(-,A

arneindsedorenare the column vectors of T, i

n

Tevare called the right singular vectors ot A or the riglit

elgenvectors of A HA because

A Au Av a 2 (A~v

The u1 are called the left singular vectorr of A or the left

elgenvectors of A A hecausc

For completeness let us also state the SVI) tor non-square m'itrIces.

If A is an (mxn) complex matrix, then the SV) of A Is given by:

A 17 Y.V Wu a (7~ .V

where

LV fV V, v2 ' . Vl (2.45)

and contains a diagonal nonnegetive definite mntriix- of Sngill.'r

values arrangcd in descending order In the form

7 ifm-'"/6

2-8L



Let us dipress momentarily now and point out an important property

of ur'.tary matrices. Recall that a complex matrix A Is defined to be

unitorv If AH = A-1 . T'hen AAP = AA- I = T. Therefore, (AA) = I

for all I, and

1A119  -60) G(A) =1 (2.47)

Ther(fore, the norm of a unitarv matrix is unity. Thus, unitary

matrices are norm Invariant (if we multiply any matr.y by a unitary

wati>*., ft will not ,:lnge the norm of that matrix).

Finallv, the condition number of a matrix A is given by

cond(A) (A)/ F(A) (2.48)

Tf tt-e rondition number of a matrix it close to zero, It indicates the

Il-conditoning of that matrix, which ImplieF Inversion of A may

produce o-roneous results. -

Some useful '-ingular volup properties %

1. If AJECm  , and det(A+E) >(1, then j(F)<O(A) (7.40)

a (A) = a 10(.), aCC, AECmxn

~.~A+ < 6 (A) + (R5 W A , ItCE:C"" (2.51)

4. '(AB) U (A) (P), A C rx r, P C Ckxn (2.52)

s .(A,) >.-(A)W2(0), A E Cmxk, Ckn (2.53)

6. 1(A)- o9pI < a(A-11), A,Bemn (2.54)

nxn
* (A) - 1 .. .(1 + A) .< (A) + I, AeC (2.55)

g. o(A) X.(A)< (A) A eCnxn (2.561

C (A) - O(B) < O(A 4 P) < (A) + U(B), A,B Cm  (2.57)

'. lO(A) - g(Tt 4 o(A + B) A, ", Ce 'X n  (2.5P-

11. _ (A) - (F.) 9 q(A - R) <__ (A) + 5(13) (2.59)

". P nk (A) = #he number of nonzero singular values of A (2.60).

a aT O.(A), ACmxn  (2.61)

2-9
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14. 5(A) </:trsce(AA) Fn Ui(A), A cC""l~ 2)

1.trace(A A) = r E (A), k = mi n(mn,n), IC (2.63)

16. der (A A) II a~ (A), k =min(m,n), ASCmxm 0. 64)

17. CT 1(AR) ,~0(BA) in general for all 1

A CC"', P, EC (?m .65)~

18. 15(A) 9(B) ~ (AB) f or A E:C~ 01n~.~ ny~.66)

20. .20.) UM (AB) f or A E Cm~~ B E 1 ny .7

and no restrictions on m, n, Pnd ! 2.68)

21. g(AB) < g(A)U(P for A CnX

and no restrictions on m, 11, and (?.69)

From the above formulas, the following four ineaoities can be deduced.

22. 92(A) 2 (B) 5(A + B) R~8~A) + U(B) 0?.70)

23. 19(A) - (B)I 4 G(A -BF) < 5(A) + G(P) 02.71)

24. Tf B Is square or has more columns than rows,

25. If A is scuare or has more rows than columns,

So far, we have stated rany properties without proofs. For a change,

let us give few properties with proofs.

Later in these notes we will see srveral robulstness tests for

multi-input multi-output control systems involving the quanti1io

2}I+C(jw)) and Q(T+r (iw)), where C(jw) is a lool, transfer r;'trix

(later we will use G~jw)K(iw)). First let us prove. t1~e followinp ilatriy .

Identity for any square compley matrix C~iw)

QI + 0'-1 + (0 + G) I C C rn ("74

To prove (2.74), consider the identity

2-10



T + C = C( + C ,

74 C) (T + (rI) C I=W,V c¢ -j --.Ii

( + C) -1T+

Cr C ( +G) + 0I + C) (T+r- T+CV

*(1 + C)- + (T + r)- l(T + C) ( + C1  1=T

(' + C) + (T + ) = IT

which ir (2.74).

Ve ca. now prove the following useful ineouallties.

% ) + 0 -JC (2.76)

t 5(T 4 + , -I (T + ) 1 (2.77)

5 c) >. g(T + c)/ (I + - 1  2(c) (2.78)

T, prove (2.75), recall from (2.51) that

-(A) + 7(P) > U(A + B)

lvttivip A = (1 + C) and B (T + C ) , and noting that A + B = I

from f?.74), we get (:>.75). .

T' prove (.76), recall from (2.71) that

E(A - .P.) -A) 4 T(B)

Lettir A T an 13 (T + C) plus the fact that

A 1 = P - (1 + C) = (T + ; from (1.74), we 2 Pt (2.76).

.tting A T nt , P (T + C the argumpnt at-ove proves (2.77).

,rrrove (2.7P), rirst notice that the terms In th-r center of the

in,'wqa t t elate to the terms In (?.75)-(?.77) through -fhe relation

2(A) = , ?( ") (2.79)

whi.(h i" cOvlous frt, (2.14) and (2.35). looklng at the left

ctt.ilitv, 'r..-v Proe it 1-y considering (2.69) in the form

2-11
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Lettng A Q ( + G and B =C, and realiing that 
0%

AR -(I + GC' )G = 1 + G, we have the left side. For the right, (( nsidet

(2.53) In the form

9 A)/9(A -9B
Using A and BRas above, we have the right-hand side.

The following table suimmarIzes various norms, such as ,e K

1? and L,, for vectors and matrices. The L and 7, norms are also

referred to as H,, and P,,. norms.

* ~~Table 2.1 
.*~**

NORM TYPF VECTOR x~jw) MATRIX C(1w)

~ lxiimax
(max col sum. cf let)

-- -max Imax
Ilxi (mxd_

-- - -- - -- - - -- - -- - -- -row sum of ,'.

or27 Ti. dr) 1 'w 1  -race(G*G)

L- rr xc up1 I ' .

Tt Is useful to know that the 1'norm of matrices is also known as rho
U2

spectral norm or Filbert norm. Obviously, for a given r.atrix, diffcrent

norms pive different values. Powever, it can he showvn that arv r,(Tm of

a matri: carnot he smaller than tihe spectral radius of that m t liv tat

A ~2-12 __



'- T .y- 1

; >- 11A (A) ( •8 ): 4-- x

:' ll~~~llany norm ,,.-

where (2.-")

p(A) spectral radius of A

max
(A)  

10% .%1r1_

:.2 Linear System Fundamentals

?•2-1 State Variables

One way of constructing a methematical model for a physical system

is to use a state variable description. Typically, for aerospace

svsters we use positions, velocities, angular positions and angular

rates as state variables. The mathematical models we obtain using state

v nriables are called state models or state space models.

There are other ways of constructing math models for physical

pricesses. For example, we can use 1) Impulse response models, 2) step

re.ponse r.odels, 3) hiph order differential equation models relating

sy!,ten inputs and outputs, or 4) transfer function representations of

the models (limited to linear time-invariant systems).

State variable descriptions are valid for linear or nonlinear,

tir,e-invartart or time-variant systems. They have bocome popular because

most of modern systrc theory, i.e., optimal control theory and estima-

tior theory, relies heavily upon state variable representation. The

trau,'ser function approach (better known as the frequency domain ap-

proach) is also very elegant, in that manv of the classical design

rsp(iitcation (such as the bandwidth ind shaping of the loop-transfer

functi,,n are very eyplicit In the frequency domain. These specifica-

frirs are not easil, represented in the state variable approach (better V%

k-7twn n- the time-dtnoain appronch). (In the other hand, the state space

alT.Yach handles multiple-input multiple-output sIstes vi ith ease,

2-13
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whereas classical frequency domain approaches do not. Therefore,

knowledge of both time domain and frequency domain approaches is essen-

tip! to take advantage of the best of both worlds, thus resulting In the

best designs.

9 .?-2 Solution of State Equations

Consider the following linear time-invariant state space model

dx(t)/dt = ~(t) =Ax(t)+ Bu(t) (2.?2)

y(t) = Cx(t) (2.83)

where -., u and y represent the state, Input and output vectors respec-

tively. A, B and C are constant matrices and are referred to As the

plant matrix, Input distribution matrix and output distribution matrix,

respectively. The dimensions of these vectors and matrices vIli be

shown, explicitly when needed. For right now, let's just say that all

the dimensions are compatible. Equation (2.S?) Is called the state

equation and (2.83) is called the output equation. Tn general, a

deterministic state model may contain an additional term Nut WIn

(2.P3). Also, we may hav'e an additional equation such as z(t) = Hfx(t)

representing measurements. The output variables y (sometimes known as

response variables) may need to be controlled with u even though the

avalalemeasurements are z. For our discussion, we will assume that

we can meastire all the response variables that we wish to control. A 7
stochan.tic state space model may contain two noise terms, one in the

state etjuatioi and Prother in the measurement equation. These noise

terr!- are known) as procesp and measurement noise, respectively. Ve will

1pnrr these noise terms for right now.

2-14
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Before we obtain the complete solution of the state equation

(2.82), we must first obtain the homogeneous solution. The state

4 equation without the forcing function (i.e., u =0) Is

=Ax (2.84)

For notational brevitv we will not show the independent variable t from

now on, unless It is necessary. Analogous to the solution of a scalar

differential. equation ax, we can write the solution o, (2.F4) as

x A(tt)y (285

Tf we let

e A (2.86)

then (2.85) becomes

x 0(t-t )x:(t) (2.87)

The matrix in (2.86) is known as the state transition matrix because

it describes the change in the stptes from one time to another time.

Some of the properties of the state trarsition matrix are as follows:

R?'t _ 1 )Vt 1 -t. Vt _(t- (2. PP

=071t)(2t)O

det(VPt)) 0 0 - finite t 0~.92)

Tr obtain the complete solution of (2.82), consider

d /dt (e~t: et (-A)x + e x

-At
e (xAY) 0.93)

';Xt1,tItutlng (2.82) Into (2.93) we get

-At -At
d/dt(P Y. = e (AY + Bu AY)

-At= e BU

Tnteprating, we get
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-At t -ATe X e Bu dT + (2. "4)to
where K Is an arbitrary constant matrix of integration. The lower limit

on the Integral is the initial tire at which u(t) is applied. We will

assume the initial time to be zero. To evaluate K, we let t 0 in

(2.94), whc ie K = x(O). We can rearrange (2.94)~ rE

X(t) =e AtX(0) + f.t e A(t-T) Bu(T) dT (2.95)

t1(t)x(O) + f q(t-)Buer) di (2.96)

= (tx(O) + fJ t ()Buft-O) d (2.97)

Referring to the right-hand side of (2.96), the first term is the

hom~ogeneous solution (or zero Input response, i.e., ui 0) and tve

second term Is the particular souin(or 7'ero state response, I.e.,

Y =O 0).

Substituting (2.96) into (2.83) we get

VWt C tWx(O) + C f (t-T)BU(T) di (2.98)

The ecuations (2.96) and (2.98) give the complete solution to the state

space model of (?.82) and (2.83) in terns of the system matricEs (A, B,

and C), the input u(t) and the Initial conditions of the states x(t0)

The first term in (7.98) Is the transient response and the second term

is the Steady state output response.

Ouestions stirh as how to evaluate the statc. transition mntrix of

(2.P6) and h-ow to evaluate the convolution integral In (2.98) will not

be addressed h ere. They can he found In anv text hook on classical

control theorv.

As mentioned hefore, (2.98) describes the output y(t) In terms of

A, C,(, u and x (t ) e' can also describe the output 1, In terms of

eigenvolues and eigenvectors, of the matri,: A. This gives furthor

Insight into the output response, I.e., It will tell uis how thc
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eigenvalues and elgenvectors of the plant will affect the output time

response.

Consider the state space model (2.82) and (2.83) again. The

characteristic equation Is given by

det(,I - A) = n + a n-1  + + alX + a o (2.99)

The elgenvalues of this equation are X 1, X 2, n  When all the

eigenvalues are distinct, recall that the eigenvector decomposition of A

gives us

A = TA T-1  (2.100)

where T is the modal matrix. The eigenvectors v. are the columns of T

and satisfy the equation

.I Alv=0 (2.301)

-I T
The rcws of T are the row vectors w and satisfy the equation

w TX T - Al = 0 (2.102)
At _

Fror linear algebra we know that e can be represented as
At + A 2  3 3
e = T + At + At/2! + At/3! + ,,. (2.103)

Using (2.100) in (2.103) we get

At 1 -2 2 - 13 3
e = + (TAT )t + (TAT ) t /2! + (TAT-) t /3! +

Att 99 3. -.1- .

= T(1 + At + At /2! + A t3/3! + ,. .)T- -"'-

= TeT (2. 104)

Note that
eAt  X )£ 2t , X 3t ... n

e = diag(e~lt, et, ... , eXnt) (2.105)

FubstItutitng (2.104) into (2.98), we get

y(t) = CTe T-x(o) + C f0 TeA(t B)T-lu(T) dt (2.106)

The state transition matrix can be written as
n

e At _ eXit T (2.-107)

eb wtiittng (2.107) into (2.98), we pet
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y(t) E Cv e w x ()
i=l i i

m n T t X-t
+f Evl E w i w(O b "' U("")

J1 i=

It is evident from (2.108) that the entire elgenstructure (i.e., 01l the

elgenvalues and elgenvectors) determines the output time response of the .'

system. By selecting the elgenvalues and eigenvectors, it is possible %

to design a feedback control law u(t) thet will shape the output re-

sponse so that it is close to the desired response.

2.2-3 Transfer Matrices

Taking the Laplace transform of the state space model, we obtain

the Transfer Function Matrix (TFM) G(s) as follows

C(s) = C(sI-A) B (2.109)

This equation is a mathematical model (In the frequency domain) of the

plant from the input-output viewpoint. Note that the matrix C(s) can

also be viewed as the matrix consisting of the Laplace transform of

Impulse responses, that is, the transfer function g1 1 (s) Is the .aplace -. *

transform of the output Y when the input u4 is a unit impulse function.

C(s) is called the plant transfer matrix. The dimension of the matrix

C(s) is given by : (the number of outputs by number of Inputs).

Obviously, C(s) may be a square or a non-square matrix.

Let's call the controller matrix K(s) and assume that it is given.

Figure 2.1 shows the closed-loop block diagram assuming unity feedback.

R(S) -- + - Y(S)Ks)Gs
- 'P(S) j)Gs

L -. .- ° -,

Fig 2.1 Closed-Loop Block Diagram.

21

2-18.,,



7X L

!We chose this kind of structure for the block diagram because if we have ,-

a controller (or compensator) matrix in the feedback loop, a block -" '

diagram eauivalent to Fig 2.1 can be obtained through block diagram

manipulation. The transfer matrix P(s) is called a pre-compensator

matrix. We will Ignore P(s) for the time being since it does not effect I ki'

the closed-loop stability. It is sufficient to know that we

itse P(s) to shape the command inputs to achieve desired performance.

For stability analysis we need to study how the loops behave. This

requires calculation of ioop transfer matrices, which we get by breaking

the loop either at the input to the plant G(s) or at the output of the

plant G(s). Tf we break the loop at the input, the loop transfer matrix .. ,

(or open-loop matrix) is K and if we break the loop at the output it is

GK. The matrices CK and KG are always square. In a SISO system GK = KC,

wheras in a INTO system CK # KG, in general. The matrix (1 + KG) or

(T + (O is called the return difference matrix, and the matrix

(T 4 FC) or (I + CK) is called the inverse return difference matrix.

We will see leter or that the closed-loop stability is directly related

to the return difference matrix. Finally, the matrices (I + OK) -1" and

CK(T + CK) are called the (output) sensitivity matrix, S, and the

(output) complimentary sensitivitv matrix, T, respectively. Similarly,

(input) sensitivity and (input) complimentary sensitivIty matrices can

be written by replacing CV' with KC above. We will see that the sum of

the matrices S and T is eaual to the identity matrix and will learn how

to us;e the matrices S and T in control system design to achieve good

command following, disturbance rejection and robustness to high

freouency model.ling errors. . ,

2-19
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Ignoring P(s), the closed-loop transfer matrix C between v and r
CL

from Fig 2.1 car be written In several different forms as follow.s

GC GK[I + GK- I  (2.110)
CL

= [ -+ G -K11]

= G[I + gC, -IK (2.1) 

Equations (2.110 - 2.112) are proved in Appendix 2A. ,%". -

2.2-4 Relationship Between the Closed-Loop and Open-Loop

Characteristic Polynomials

RSE()Y (S)_::"

..

Fig 2.2 Block Diagram of MIMO Feedback System"

Consider the MIMO closed-loop block diagram shown In Fig 2.2. Here

G(s) is an open-loop transfer matrix, i.e., C(s) contains both the plant

transfer matrix and the controller matrix. We have selected this block

diagram configuration to derive the relationship between closed-loop and

open-loop characteristic polynomials because it Is simple and easy to

derive the relationships we are after.

Let us now proceed with Fig ?.2. First let ( and * denote the
01.l CL

open-loop and closed-loop characterlstlc Polnomials respectively. The

state space description of Fig 2.2 is as follows

;(t) = Ax(t) + Be(t) (? 11 )

y(t) = Cx(t) (.114)

e(t) r(t) - y(t) (2.11)

The relationship between C(s) and the state space description is

C(s) = C(sJ - A)B (.116)
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LI 7%XI =27%; q - - 7

The open-loop characteristic polynomial 4boL(s) is

%1 (s) = det(sT - A) (2.117)

To obtain an expression for the closed-loop characteristic polynomial

cCL" let us manipulate (2.113 - 2.115) to obtain

(t) ; (A - BC)x(t) + Br(t) (2.118) -*"

Let C (s) represent the closed-loop transfer matrix. The relationship
CL

between GCL(s) and the state space description Is
C-1

Gc(s) = C(sT - A + BC) B (2.119)

The closed-loop characteristic polynomial 4bc(s) is
CL

0e(s) det(sl - A + BC) (2. 120)
CL

or

(s)= det(sT - ACL) (2. 121)

where

ACL = A - BC (2.122) .9*

The closed-loop system will be stable if and only if all the elgenvalues Wit-,

of AC1 are in the open left-half s-plane. To rephrase: the closed-loop

system will be stable If and only if all the roots of L(a) are in the

open left-half s-plane. These roots are also the closed-loop poles.

The relationship between (s) and i s as follows -.-

c(s) = o(s)-detlI + C(s)1 (2.123)
CL OL

Equation (2.123) relates the closed-loop poles to the open-loop poles

and the determinant of the return difference matrix. This equation

turns out to be very useful In MTMO Nyquist stability criterion. To

proxe (2.123), we need a few determinant identities vh!ch are stated in

Appendix 2B. Substituting (2.120) into the left-hand side (LBS) of

(2.1?1) and (.117) and (2.116) into the right-hand side (RHS) of

(2.1'3), we have
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det(sI - A + BC) =det(sl - A)*det(T + C(s] - A) B) (7.124'

Let us start with the RPS of (2.124) and show that It Is equal to Its

LHS using the Identities In Appendix 2R. The RMIS can be written (USin~g

(2B.2)) as

RHS =detFS A B

Using (2B.4) on (2.125), we have I 215

RHS = det(I).clet(sI - A + BI 'C)

= det(sT - A + RC)IV

=LHS of (2.124)

Before we close this discussion on closed-loop chiaracteristic

polynomials, let us specialize (2.123) to SISO svstems and show that it

holds. Let the open-loop transfer function (i.e., it Includes the plant

and the controller transfer functions) be g(s). Let n(s) and d(s)

denote numerator and denominator polynomials of g(s), respectivelv, that l7

is

g(s) = n(s)/d(s) (2. 126)

* =d(s) (2. 1?7

We also know that the closed-loop transfer function g ~(s) is glven by

gL()= g(s)/rl + g(s)1

= n(s)/rn(s) + d(s)l

=Cs n(s) + d(s) (2. 128)

Now, according to (2.123), we must have

=OT ~0 (S)*r + g (S)

d d(s) -I + n()/ s

=n(s) + d(s)

S(S)CT
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which Is correct.

If one Is interested In treatinp the controller .rd plant matrices

separately, the algebra Is a bit tedious and is shown completely in ,Ki

Appendir 2C.

o.2-5 Zeros of MIMO Systems and Their Meaning

The poles of a RTMO sysntem are simple and straight-forward to

calculate. We know that the open-loop poles are simplv the roots of the ,- ,

open-loop characteristic equation, det(sI - A) = 0. The closed-loop

poles are given by the closed-loop characteristic equation,

det(sT - A ) 0, wbere ACL is given by (2.119). They can also be
CL C

calculated using (2.123). What about the zeros of a transfer matrix?

Are the zeros of a transfer matrix the same as the zeros of the

individual transfer functions in the matrix? The answer is no, in

general.

First let's consider the meaning of the zeros of a transfer func-

tion for a SISO Rystem. A system zero absorbs the energy of a complex

exponential signal it a frequency equal to the zero's frequency. For

eyanmple, consider the following transfer function

y(s) (s+2)

u(S) (s+3)(s+4)

Let the Input signal he

S"t

Then

y(t) =j e0 3 - ue
-2tObvic-uslv, the output does not contain any terms of the form e . Thus,

the svster has blocked all input signals with a frequency equal to the
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7-1 -- rPK .

location of the zero. We would like to preserve this Intuitive Idea

even for MIMO systems.

For a MIMO System, If we have what we will define as a transmissior

zero at s = z , and If the input vector u(t) has the form .

u(t) -u 0ezkt

where u0 is a real constant vector (note that u1 Indicates the direction

of the input vector), then we want the output vector y(t) not to contain

any signals of the form ekt This concept must be refined~ a bit, which

involves the direction u. Let us explain this with the help of the

following simple example. .

s+l

F~s u(s)
- ~S+2'0o -- (7. 129)

For this system, it turns out that we have transmission zeros at s =-

and s -2. If we apply a general Input vector u(t) to the system, of

the form

u(t) u e

where u0 Is also a vector, then the output yl(t) will not contain a term

e, but the output v (t) will. Therefore. In a multivarlahle sense,

7 the 2-dimensional output vector v(t) will contain the 7ero freauency

exponential term et Similarly, If we apply an Input vector of the form

UMt = u et
0

to the system (2.12q), then v (t) will not contain the frequencv e .

but y (t) will.

The above argument indicntes that we cannot use an Prbitrarv %

direction u0 This simple example suggests that we retain thec
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energy-absorbing property only by using an Input vector of a specific '

direction. In the eyrample, if we consider the Inputs

* U(t) e

and ;] j ~IL

we can see that the output vrector y(t) will not contain terms at either

zero's frequency.

Thus, we arrive at the time domain Interpretation of transmission

7erOS of MIMO syrtems. If a system C(s) has a transmission zero at

s =Zk and if we apply an Input vector .

1i(t) u uezkt

where uk Is an appropriate input direction associated with the trans-

misgion zero at s =zko then the output vector y(t) will not contain the

(Complex) exponential ezk In any of its components.

So far we have not addressed the problem of how to find the trans-

mission zeros. There are many methods available to calculate them, but

we will study only a few. Furthermore, we have not discussed the fact

that there are other types of zeros, namely decoupling zeros and

Invailant zeros. For a completely controllable and observable system

(definition in Section 2.7-9), the set of system zeros is just the set

of transmission zeros. Since we usually deal with controllable and

observable systems, we only need to know how to calculate the

transmission zeros. For more on other types of zeros, the reader Is

S.,. referred to Ref (71.
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.26Calculation of transmission zeros

One method of calculating transmission zeros Is to arrange the

I plant matrix C(s) into SmIth-McMillan form. We do this by finding two

unimodular matrices M(s) and N(s) (unimodulor matrix means that the

determinant of the matrix is Independent of the variable s) su1-' that

C (s) = M(s)rC(s)N(s) 1.130)

where G (s) has the form

0 ... 0 0 .0

01(s) o *.

02(s)

G, (s). (2.131)

0 t 0 e,() 0 ...

[0 0 . 0 0 ..0

SIn (2.131), C (s) and Yp s) are relatively prime polynomials (see

Appendix 2D for the definition of relatively prime polvnomialsi.

Moreover, the cLi's and 's have to satisfy the following: (.12

ELi(s)l C (s) J e(s) (2.137

and

P(s)j l~.(s)I P. 2(s)l ... wp1 s) 0?.133)

Where albic means that a divides b without- remainder and b divides c

without remainder. When all these are satisfied, G' (s) is said to be In

the Smith-McMillan form of C. If we define the transmission zerr.

polynomial Z(s) as

Z(s) = I Li(s) (2.134)V.

1=1

then the roots of z(s) 0 ( are the transmission zeros. If we start with%

the system matrix P(s), where

2-26
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pY
P~s) 5I-A(2. 135)

p and arrange it In Smrith-McMlIlan formr, the resulting polynomial (2.134) ~

will yield all zeros of the system (that is, both the transmission zeros

end decoupling zeros). *~

Example 2.2-1

This example will Illustrate the method of obtaining the transmission

7.eros by arranging the transfer matrix Into Smith-Mcl~illan form.

Suppose U~s) Is given by

C(s) -P(s)
d (s)

where

d(s) =(s+])(,-+2)

and

P(s) s s4 2 -

Ve obtin the natrices M.(s) and N(s) In (2.130) as follows:

Because P(s) has 2 columns and 3 rows we append a (Wx) and a (3x3)

ident-itv matrix to it both below and to the right:

2n 2[S:.4 2s _ 8]00

00

Performing elementarly row operations on the upper 3 by

'.ick yields
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"2 2S3(s 4) i s-s 0." ''

S2 2-
0 3(s24) 4-s 0 14

N. 0

Performing elementary column operations on the left 5

by 2 block veilds ,4." .

s-s0 0 0]

2 21
s 4 4 0

2 F2I : 1 1/3

0 1/3

Final row operations give

0 I 0 0-

0 s 2 _ 4 -s-s 21 0 ' -

0 s-

o 1 j/ 423L0  L1/3

Thus,

• ""s) L1 -1 ]00 1/3

and i the t--s 2  0 N(s) = L 1/

and the Smith-Mcillan form G (s) of G(s) is
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Ipar

4V

G1(s) = (s+l) (s+2) s4

0 N
(s+1) (s+2)

s+l

Notice that M(s) and N(s) are unimodular watrices, sirce elementary row

and column operations do not affect the determinant (except by a con-

stant when a row or column is multiplied by a constant). The

transmission zero from the Smith-McMillan form is at s =2.

Obviously, It may be difficult to arrange a matrix Into

Smith-McMillan form, mainly because we have to do algebraic manipulation

of polynomial matrices, which Js difficult to do by hand and even more

difficult on the compute'r (unless you have an algebraic manipulation

langt'age). There is a computer program called "zeros" available at

WPAFI that calculates all the zeros by posing the problem as a gener-

a.1I7ed eigenvalue problem, and solving it utsing (1-7 algorithms. We will

not study the details of that technique; rather, we will study the

following technique, which is based upon right-coprime factorizations

(r.c.f.) or left-coprime factorizations (cf). For the definitlor of

r.c.f. and I.c.'. see Appendix ?E. F-
Suppose that we have a right-coprime factorization of G(s) As

C(s) = N (s)[l) (s)]1 (2.136)
r r

Then we can state the following:
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-If C(s) Is souare and nonsingular, then the transmission 7eros

are the roots of detfN (s)1 = 0.
r

-If C(s) is non-square, then the transmiscion zeros are Fiven by

the frequencies at which the rank of N (s) drops below Its nora rank
r

(normal rank is the largest rank that the matrix can have).

Similar statements can be made for a l.c.f. of C(s),

C(s) [Nt(s)1 Dts) (2.1 37)

How do we find a r.c.f. or 1.c.f. of C(s) as shown In (7.136) or

(2.137)? To answer that, we state the following m~ethod:

Consider the state space model

x=Ax + Ru

=Cx + Du (2. 138)

so that

C(s) =C(sl -A) B + D (?.139)

Suppose that the syvstem described by (2.13P) is stabilizable ir'

detectable (we will discuss stabilizebilitv and detectability later In

these notes). Select matrices F and K such that all the eigenvalues of

the matrices A.= A- BK and A A- FC have negative real parts. Then

we wil have

r,(s) N Nr (s)[D r51 =l [De(s)IN s (2.140)

and

Y r (s)1 [ (rs) -es[2; D~s) N s) =I for als
-Ns Lt (s rN s Ye s) (2.141)

If we define

Nt(s) =C(sT - A 0 (B -FD) + D (2.147)

De(s) =T - CsT A A0) 
1 F (2. 143)

N (s) =(C -DF)(sT -A) B + D (.14
r
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D (s) = T- K(s -A) B (2.145)
r 0

X (s) = K(sl - F(2.F16)

Y (s) = T + K(sl - A0)-(B - FD) (2.147)
r 0

Xt(s) = K(sl - A.) F (2.149)

g0(s) = T + (C - DK)(sl - A,) -F (2.1491 .

The equation (2.14]) is called the generalized Bezout Identity. The

only nontrivial step needed so far is to find matrices K and F such that

the matrices A0 and A have eigenvalues with negative real parts. This

can 'he accomplished by solving Riccatl equations; i.e., select arbitrary

positive definite matrices 0,, Q2 , RI and R2 of appropriate dimensions,

and solve the equations

0 1 + MA + ATM - MBR I BT M- 0 (2.150)

+ LAT + A1 LC. (2. 151)
2 2

for the unknown atrices M and L. Then define

K -IBTM F L T R-1 (2.152)

The rationale behind this is given in Chapter 6 of this notes. The main

advnntage of this method !s that it deals with manipulation of real

numbers, not polynomials. Basicsllv, It reoulres two computer programs,

one to solve Riccati eountitons and the other to do complex matri._

inversion, (sT - A)

Y'ow let us show a couple of simple examples and ,',-ke a few

comments.

Exaple 2.2-2

Consider the system:

A] B= 7]0 0 0::ii:
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L1 -l Fl- 0. L1u -. - T0v4 OT

C [1I
L0  1i L0

so that

G(s) =C(sl A) B + D

Choosing

0102= 1  R 2 = 1 [ 0
and solving (2.150) and (2.151), then substitiitIng the resulting 11 ar.0 L

matrices Into (2.152) y~elds

K [0o.4142 0F L[0.2361 ]
0 ~01

We really only need one factorization, so we'll choose the l.c.f. Also

note that we only need Ntfrom (2.142), but we will calculate D.as well

for completeness. The X and Y matrices are not needed at all here but

are useful in other applications (see Chapter 17). Next we need A3

which is given by

[2.2361 0

A-AFC=[

Substituting all these quantities into (2.14?) and (2.143) yields

Nt(s) =C(sl -AO) (B -FD) + D

= 1 01 11+2.2361 01{]:11o~6 1V 3 1 o

0
~s+2.23bl-j

s+2

S+l
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r) )S T - CAs'k'A F

0

= i o l 0 o s r 2.2361 0 [0.2361 0-

0 JL 0 s4 ' L 1
S+2

~s+2.2361 I_

0 ~ SI

Tt Is trivially obvinus that G(S) [Dt(s)1 1Nt(s) for this example.

Since G(s) is square, to find the transmission zeros we must find the

roots of

dtTN()l - s(s+2) -

(s+l) (s+2. 2361)

which are s=0 and s =-2.

Ouite often, r~c.f.'s and l.c.f.'s are defined in terms of %

polynomial matrices rather than transfer function matrices (see Ref.N.

F2-31). Looking at the previous example, it Is obvious that

G(s) + ..2 0i' ..+2]1

since the denominators of the correspording individual elements of Ny(s)

and (s are the same. The denominators will always share this %

property. Therefore, let's look at sit example where the l.c.f. is

already given in polynomial form.

Example 2.2-3

Consider the l.c.t.

CO + [D e(s)]'N t(S)

=[.+2 o 0,[o+i
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We note that G(s) is a non-square matrix and the normal rank of F (s) is

two. There is no frequency for which the rank of N (s) is less t,an
t

two, i.e., for all values of s, there are always two columns that are

linearly independent. Therefore, there are no transmission zeros for

this system. Notice that had we tried to guess the transmission zeros

by inspecting the individual transfer functions of C(s), we would have

been In trouble. Also notice that, typically, rectangular systems do

not have transmission zeros because it is unlikely that all minors of

size less than or equal to the normal rank will be oimultaneouslv zero.

From the above two examples, we see that the transmission zeros of

G(s) exhibit some phenomena which do not exist in the STSO case. A

transmission zero may appear as a pole of the same C(s) (note thpt in

Example 2.2-2 the poles are also at s = 0 and s = -2). Even though

individual elements of C(s) have zeros, the matrix C(s) may not have

zeros. Despite all these differences, the Interpretatlor of zeros of M

MIMO systems is still the same as the zeros of SISO systems from the

time-response point of view (as explained at the beginning of section

2.2-5).

2.2-7 Nonminimum Phase Systems

In section 2.2-5 and 2.2-6 we discussed a preat deal about zeros.

Why are we so concerned about zeros? Because systems with zeros in the

right-half of the s-plane cause considerable difficulty to the control

system designer. This type of system is called a nonminimum phase

system. Zeros have a dramatic Influence on the nature of the time

response. Whenever there is a zero in the right-half s-plane, the

initial time response of the system is negative even though the

steady-state value is positive. This type of initial response (typical
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to both SISO and MIMO systems) presents a difficult control problem.

Imagine trying to drive a car in which every time you turned the wheel

to the left, the Initial response moved the car to the right before It .

.N eventually came back to the left. This is the type of behavior one must

contend with In a nonminimum phase system.

The zeros of the open-loop system are the same as the zeros of the --

closed-loop system under unIty feedback f or both Sf) and MMO systems,

whether they are controllable and observable or not. if we think of

feedback design for SISO systems using root locus, we know that all the

branches of the loci start at the open-loop poles and end at the zeros.

The closed-loop poles lie somewhere on the root locus and their location

depends upon the gain that is selected. Naturally, if we have a zero in

the right-half plane, the closed-loop system will go unstable provided

the gain is sufficiently increased. This is true for MIMO systems also.

The root locus for a MIMO system starts at the open-loop poles. Some of

the branches of the loci end at the (finite) transmission zeros and the

otbers end at (conceptually) the transmission zeros at infinity. If V

there Is a transmission zero in the right-half plane, the closed-loop

system will go urstable for a high enough value of gain.

Among other concerns, we will see later that when we use the

control system design procedure LQC/LTR (Linear Qaudratic Gaussian with

L oop Transfer Recovery), we may not be able to achieve robustness to

high frequency modeling errors or achieve good performance at low

frequencies, depending upon whether the right-half plane transmission

zeros are above or below the cross-over frequency of the uncertainty

profile. %
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Before we close this section on zeros, we should remember that

nonminimum phase behavior is a modeling problem, not the real syster's

problem. That is, the zero locations depend upon where we mount the

actuators and sensors. We can change the pattern of zero locations and , ,

hence change the nonminimum phase behavior of the model by rearranging

the control distribution and/or measurerent distribution as represented

by the matrices B and C in the state space model. However, with a given

set of actuator and sensor locations, we may be stuck with nonminimum -

phase behavior.

2.2-8 The Multivariable Nyquist Stability Criterion

Nyquist stability criterion gives a YES or NO type answer to the -.

question of stability of a feedback system, i.e., does the closed-loop

system have any poles in the right half s-plane or not. Before d4gital -"'-'

computers V .ame popular, it was not a trivial task to find the roots ot

the characteristic equation by hand, in order to find closed-loop

stability. Nyoulst criterion was, however, relativelv easy to apply by

hand for SISO design and analysis. Today, the question of YES o, 1O

stability is relatively easy; all one needs to do is to write the state ..

space description of the closed-loop system and calculate (using canned

digital computer subroutines) the eigenvalues of the closed-loor system . ...

matrix. This leads to the auestion of why we study Nyquist criterion

for MIMO systems. We study it because of the following reasons:

1) It does still provide a YES or NO type answer to MTMO closed-loop

stability.

2) For systems that contain time delay terms o' the form e , ttate

space methods are very awkward since the system is infinite-

dimensional. The Nyquist theorem is very useful for ruth svste,,,-.
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3) Most Importantly,~ it forms the basis for closed-loop robustness

Prtavsls for modeling errors and for closed-loop 
robust control design 4

using loop-shaping techniques.

Consider the block diagram of Fig 7.?. Recall that the closed loop

characteristic polynomial is given by

4) =4 det[T + (.(sfl (2. 153) J.

where

* =det(sl - A)(214

We now need somne basics from complex variable theory.

1w

iRR

Fig 2.3. The Nyquist Contour D.in the s-Plane

Let iis define a closed contour D as shown In Fig 2.3. The clockwise

CPT'tcur D as R--, Is called the 1yquist contour and encloses 
the

Urtire right-half s-plane. The closed-loop system of Fig 2.2 will be

stalle If are rcniy if the Nyquist contour D Rdoes not encircle any of

the roots of the closed-loop chararteristic p~lynomial 
4 L~ given in

t6 (2.153). This is simply a restatement of "no closed-loop 
poles in the

right-half s-plane". Before we find the Nyquist stability criteria, let
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us first state without proof what is called "the principle of the ..

argument" from complex variable theory.

The principle of the argument: Let C be a closed clockwise corrour in

the s-plane (note that D is a particular closed contour). Let f(s) be
R

a complex valued function (for us f(s) may be 4yC). Suppose that:

1) f(s) is analytic on the contour C (i.e., df/ds exists for every,- "ll,"" :

point on C). "'

2) f(s) has Z zeros inside C.

3) f(s) has P poles inside C.

If we plot f(s) in the complex s-plane by evaluating it at every

point on C, then what we get is called the image of the clockwise ,.

contour C under the mapping f(s). The principle of the argument states

that this image encircles the origin in the complex plane Z - P times in

a clockwise sense.

Let the notation N(A, f(s), C) denote the number of clockwise -

encirclements of the point A in the complex plane by the image of the ".4,.

clockwise contour C under the mapping f(s). Using this notation, we can

write the principle of the argument as

N(O, f(s), C) = Z - P (7.155)

One useful property that we will need later is as follows. Suppose

that f(s) can be written as

f(s) f (s)f (s) (2.156)

Also suppose that there are no pole-zero cancellations between f (s) and

f2(s). Then the principle of argument yields *.-

N(0, f (s)f2 (s), C) = N(O, fl(s), C) + N(O, f2(s), C) (2.157)

If fl(a) has Z zeros and P1 poles Inside the contour C, and If f (s)

has Z zeros and P2 poles inside the contour C, then (2.157) means that
"2 -3
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Z - P f (Z1 - P1) * (Z2 - P2 ) (2.158)

using the principle of the argument that we just discussed. Pecall that

of the closed-loop system. Also recall that CL can be written using a *,

state space description as follows (see (2.120) and the development

surrounding it)

, =det(sT- A + BC) (2.159)
CTL

th
Note that L in (.159) is an n degree polynomial with n zeros and no

CL

poles. It may be confusing, but we should remember that the n zeros of

the polynomial In (2.159) are the n closed-loop poles. We should also

note that the term det[I + G(s)l is, in general, a numerator polynomial ..

divided by a denominator polynomial. But this denominator polynomial

will get cancelled when multiplied by O (you can check it quickly by

taking any simple MTMO example). This is why given by (2.153) is
CL

th .
also a n degree polynomial with n zeros and no poles.

Tf we apply the principle of the argument to 0 (s) using the
C71

Nyquist contour, f(s) = c(s) and C = DR . Since (s) has no poles,
CL R* l

P = n. For stability, there must be no zeros of (s) in the
C11

.14 right-half s-plane, that is, Z = 0. Therefore, (2.155) becomes

N(0, , (s), D =0 (2.160)

if ovd only if the closed-loop system is stable. Substituting (2.153)

intv (2.160) we have .

N(O, .det(T + G), D) = 0 (2.161)
0TL R

if and only if the closed-loop system is stable. 17sing (2.157), we can ""

write (1.161) as
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* ~ ~ ~ NO (s) det( +. C) D.- . -

NNO (0 ( det( (s ), D R) (,dtl+C) 212

OLR

poles. These 7eros correspond to the open-loop poles of the transfer

matrix C(s). Let P ULdenote the number of unstable open-loop poles of 5

G(s). The principle of the argument applied to Po (s) then gives

N(0, Cs), D) P (2.163)
oil R !i,OL

Substituting (2.163) into (2.162), we have

P P + NO0, det(I + C), D)=0
7, OL P,

or

N(O, det(T + C), 1) ) P 0?.164)
R TT,OL

Hence, the closed-loop system of Fig 2.2 Is stable if and only If

(2.164) is satisfied. Let us rephrase this. The closed-loop svstem of

Fig 2.2 is stable If and only if the number of counter-clockwise

encirclements of the origin by the image of the clockwise Nyquist

contour D under the mapping det(T + C) equals the number of unstable
R

open-loop poles of the open-loop transfer matrix C(s).

Now let's look at the Nyquist stability criteria for the Sl5SO case.

Since the determinant of a scalar Is itself, (2.164) reduces to

NO0, 1 + g(s), D ) _P (2.165)
R U,OL

It is also easy to see that

NO0, I + g(s), D )=NC-I, g(s), D (7.166)
R R

The reason Is that If we plot the Image of D Runder the mapping I + g(s)

then by shifting every poInt of I + g(s) by -1, we obtain the image of

DR under the mapping g(s). That is, (2.166) states that the number of

5,encirclements of the origIn by the Image of Dunder the map 1 + g(s) Is

the same as the number of encirclements of -1 by the Image of D> tinder
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the map g(s). Assuming that Fig 2.2 stands for a SISO system, the

closed-loop system is stable if and only if

N(-], g(s), D P(2.167)R U,OL

Unfortunately, (2.164) can not be simplified any further (that is,

removing the determinant operator or shifting the origin to -1) for an

arbitrary matrix G(s). The only further simplification possible is for

the special case where G Is a diagonal matrix, that is

C(s) = diagr g1 (s), g2 (s), ... , g(S)] (2.168)

which means we are dealing with n decoupled SISO systems (this Is a

trivial multivariable case). In this case

n
det[l + C(s)1 iI [1 + g(s)] (2.169)

and (2.164) can be written as (see the property shown in (2.157) also)

n
. N(O, I + g(s), D) =-P (2.170)

I R U, 01

hotice that the nice thing about the Nyqulst stability criteria is

that rn order to determine closed-loop stability we don't need to solve

for closed-loop elgenvalues. We can find closed-loop stability based on

open-loop information. In the SISO case, we use either g(s) or 1 + g(s)

as shown in (2.167) or (2.165). In the MIMO case, we have to use the

determinant of the return difference, det[l + C(s)], and we cannot

simplify it to the form of (2.167) unless C(s) is completely decoupled.

This does Increase the difficulty in using the technique, but for time-

delay systems we really have no choice. For robustness analysis (see

Chapter 3), our stability tests will be based on the Nyouist criteria,

but we will not actually have to plot det[T + C(s)]. As one final

comment, if a compensator matrix K(s) is present in the system, we can

simply replace G(s) with C(s)K(s) through the relationship given In ,-..-

Appendix 2C (substitute equation (2C.26) Into (2.160)).
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2.2-9 Control lability, Observabllity, Stabilizability and

Detectability

In this section we briefly explain what we mean by controllability,

observability, stabilizability and detectability. These concepts ";
.6

(determined only from state space models) are important to design

techniques using optimal control theory, elgenstructure assignment, pole

placement, etc.

A linear system described by the state space model

i(t) = Ax(t) + Bu(t) (2.171)

is said to be completely controllable if and only if the system can be

transferred from any initial state x at any initial time t to any0 0
final state x(tf) = Xf within a finite time t -to. If the system is not

completely controllable (i.e., uncontrollable), then no matter bow much

control energy we put into the system, there are certain states in the

state space that can not be reached. From a pole-placement viewpoint, a

completely controllable system Implies that we can move all the poles of

the system (using feedback) whether those poles are In the left-half or

right-half s-plane.

A simple test to determine complete controllability for the linear

system of (2.17]) is to first form the so-called controllability matrix,

denoted by MCP given by

MC = [B AB A B A RI (2.172)

where n is the number of states. If the rank of MC is equal to n, then

the system Is completely controllable. If this rank is less than n, the

system is uncontrollable. The rank defect of MC (i.e., n minus the

actual rank of M ) tells us how many modes (poles) are uncontrollable.

C

2-42 , " " .

"- . ---' - ' - ' . -.- ,, - .' '" . .' '" . + " ; " .' '" -" " ." . . " . • ." - . " ' . ' .. . ." . . -" '. . " . . i' ''%:



°'.

When the eigenvalues of A are distinct, the uncontrollable modes have

the property

Rank( X - A, B] =g < n (2.173)

Equation (2.173) gives us a way to find which modes are uncontrollable.

If the elgenvalue A is uncontrollable, then it is also called an input
U

decoupling zero. -.',

There is another way to describe controllability. Consider the

system of (2.171), and assume all eigenvalues of A are distinct. Define

a transformation of state variables by

x()= Tz(t) (2.174)

where z(t) Is the transformed state, and T is a transformation matrix

whose columns are the elgenvectors of the A matrix. Then (2.171) can be

rewritten as

z(t) = T ATz(t) + T Bu(t) = Az(t) + B u(t) (2.175)

where A is a diagonal matrix with the eigenvalues as the diagonal

elements. If B does not have a zero row, then the system is completely

controllable; otherwise, it is not completely controllable, and the

eigenvalues corresponding to the zero rows are the uncontrollable modes.

If all the unstable modes (poles or eigenvalues) are controllable,

then that system is said to be stabllizable. This tells us that

stob~lIzability does not Imply complete controllability since the stable

modes (poles in the left-half plane) may not be controllable (i.e., we

may not be able to move them using feedback). However, complete

controllability does imply stabilizabIlity.

A system Ifs said to be completely observable if every initial

state x(t0) can be exactly determined from the measurements of the

output y(t) over a finite interval of time t 4 t4 f* This implies that
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every state x(t) affects the output y(t). If there are any states that

do not affect the system response, then it is not a completely

observable (i.e., unobservable) system. This means that if the system

is not completely observable, then there are certain states that can

never be identified or estimated because there are some states that do

not influence the output.

A quick way to check if the linear system described by

;(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (2.176)

Is completely observable is to first form the so-called observabilltv Z

matrix M given byo
T! T T T?2T: Tn-ITM [C A C (AT) C i (AT)nC T ] (2.177)

0

If the rank of M is n, where n is the size of A matrix, then the system
0

in (2.176) is completely observable; otherwise, it is unobservable. The

rank defect of M is equal to the number of unobservable modes. Another
0

way to understand complete observability is to use the transformation

(assuming nonrepeated eigenvalues) shown in (2.174) on the output

equation of (2.176). We have

y(t) = Cx(t) = CTz(t) = c z(t) (2.178)

If a column of C has all zeros, then one mode is not coupled to any of

the outputs and the system Is not completely observable. Again, the

modes corresponding to the zero columns are unobservable.

If the unobservable modes are in the open left-half s-plane (i.e.,

stable), then the system is said to be detectable. Obviously,

detectability does not Imply observability whereas observabilltv does

imply detectabillty.
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Finally, a pole-zero cancellation in a transfer function implies -es.

that the system is either uncontrollable or unobservable or both. That

is why a pole-zero cancellation is not permitted if we are interested in

deriving a state space model from the transfer function. Such a

cancellation will destroy the information regarding controllability and

observability.

67-
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Derivation of equations (2.110 -2.112) '.,'

Consider the following MIMO block diagram

Fig 2A-1 MIMO Block Diagram

We have

e r-y (2A.1)

y Cu. (2A.2)

u =Ke (?A.3)

To get (2.110), start with (2A.1) and simplify as shown

e r r y

r -Cu

=r -MCe

Solving for e, we get

e= (I +GK)- r (2A.4)

But

y = Ke (2A.5)

so that substituting (2A.4) into (2A.5) yields

yC- K(I +GK) r

G GCL K (T+ K)- (2. 110)

To get (2.111), start with (2A.2) and simplify as shown

y G u

=GRe

'4 = K(r -Y)

=GKr -M.y
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Solving for y, we get

y (T + CK) GKr

.cL (I+ )-1 (2. 1! )GK

CLK

To get (2.112), start with (2A.3) and simplify as shown

u Ke

= K(r - y)

K(r - Gu)

= Kr - KCu

Solving for u we get

u (T + KG) Kr (2A.6) --

But

y Gu (2A.7)

so that substituting (2A.6) into (2A.7), we have

y G(I + KG)- Kr

C CL = G(I+ KG) K (2.112)

There are two more ways of obtaining (2.111) from (2.110). The

algebra shown in the following steps is sometimes very useful in matrix

manipulation. Recalling that (AB) = B-IA -I, start with (2.110) and

simplify as shown below

GKCI + GK) [( + GK)(GK) 3

=(GK) -  + T] Il

= I(CK) ( I + CK) -

(T + CK)-IK .

which is (2.111).

The other way Is to consider the following matrix identity and

follow the steps (remember CK is a square matrix).
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CK + (GK) 2 G K + (GK) 2

GK (I + GK) = (I + CK)GK __

(I + K) -1GK(I + K)=GK

(I + GK) GOK =GK(I + CK) 1

.*0
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Appendix 2B

Determinant Identities required to prove (2.123)

1. If A and A are square matrices, then
1 2

det(A A) det(A )-det(A (B1))
1~ 2 12.2

2. Let A I and A 4 be square matrices and let A2 and A3have appropriate

dimensions. Then

det [ 21=det(Al).det(A4-A A1 IA (2.2
A 3  A 4

provided A exists.

3. [A1  A2] [A4  A
det J det~ (2B.3)

4. Combining equations (2B.2) and (2B.3), we get

det K 1=det(A4).det(A 1-A2A41 A) (2B.4)
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Appendix 2C

The relationship between closed-loop and open-loop characteristic

polynomials for MIMO systems considering the plant and controller

transfer matrices explicitly

Fig 2C-1 MIMO Block Diagram

Consider the MIMO block diagram shown in Fig ?C-1. Let's derive

the relationship assuming K(s) has poles and zeros in it. Our final

result will hold even If K(s) is a pure gain matrix. First, we iteed to

write the state space description of the transfer matrices C(s) a-rd

K(s). Let's use the matrices A, B, and C in order to realize C(s) and .~

the matrices E, F, and D to realize K(s) Ps shown below.

* . Plant:

()= Ax(t) + Bu(t) (2C.1)

y(t) = Cx(t) (2C.2)

G(s) =C(sI-A) B (?C. 3)

Controller:

i(t) =Fz(t) + Fe(t) (C4

u(t) =Dz(t) (?C.5)

V(s) =D(sl - F) F (2C.6)

We augment the systems represented in (2C.], 2C.2) with (2C.4, ?(:.i) as

shown below by defining a new state vector (y, z)

Augmented System: %

~ : :1~::~1 + e~t)(2C.7)
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V(t)J (2c.) .-

Note that the BD term in (2C.7) comes from combining (2C.1) and(2C.5).

Let us rewrite this augmented system as:

M(t) = x (t) + B e(t) (2C.9)

M(t) =C x1 (t) (2C.10)

where:

1 T
X (t) = f(x(t), 7(t) (2C.11)

A L BD (2C. 12)

B
1  I(C. 13)

C1 =[C 01 (?C. 14)

L.e t

A =T

A = -C"

A = B1
3

A sI - A1
4

Then using (2B.4) we have

det '

L3 A 4

= det(A 4 ).det(A1 - A
4 114

= det(sT -AI)'det(T * C (sI - A1)-IP,)

[si-A -B sI-A 1Bdet - det I + [C 0 - (2C.15)

0sI- sl-E "-

Sf cn, (sT - A) nn(' (r;T - E) are scuore matrces, usinR (2B.2) we have

2-..
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I IA -BD
det =det(sI -A).det(sI -E) (2C. 16)

It is easy to verify that

A. si -RD ~ (1(sI - A) RBD(SI Tl 7
1 0-A s1 Ej 0 -A) 1  (sT - E)- (2C.17

Substituting (2C.16) and (2C.17) Into (2C.15) and carrying out the

matrix multiplication we have

IAt 1  ~2
d A3  A]

det(sI - A)-det(sT -E)-det[I + C(sl -A) BD(sT -F) F1 (2C.1p)

Substituting (2C.3) and (2C.6) into (2C.18) we get

det[i ]
=det(sI -A)-det(sT -F)-detfT + G(s)Y(s)l orC.19)

From Appendix 2B, we know that (2B.2) and (2B.4) are equal. Let us

start with (2B.?) and simplify as shown

A~,

1det(A )-det(A -A4

det(l)-detfsl - A )+ B I C[I - A 3A -BD -
det{[ ; s-]

[IT- A -BD
det L C s -Ej(2C.20)

Using the result shown in (2B.4), we have

AC sI - E]

-det(sl - det(sT -A + BD(RI -E) 'FC) (2C.21) '.
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Substituting (2C.6) and (2C.21) into (2C.20), we have

det(A I)det(A 3 A A 2)

de~l-E).detfsI - A + BK(s)CJ (2C.22)

FIZZ Equating (2C.19) and (2C.22), we have

det(sI - F)detfsl - A + BK(s)CI
det(sI - A)-det(sI - E)*det(l + G(s)K(s)1 (2C.23)

Because K(s) Is a transfer matrix, the matrices rsl -A + BK(s)Cl and

[l + G(s')K(s)l in (2C.23) are also transfer matrices, meaning each

element of these matrices is a transfer function. Therefore, the

determinants of these matrices are transfer functic:.S With poles and

zeros. However, the product of det(sI - F) and detrsl - A + BK(s)Cj is

a polynomial because the denominator of detfsT - A + BK(s)C1 gets

competey caceled.Similarly, tednmntro er ~)~)

also gets completely cancelled when mtultiplied by det(sI - A) and

det(sl, - E) (you can verify these facts easily with a simple example, if

Nou wish). Thus, both sides of (2C.23) are polynomials.

We know that the poles of the open-loop system are the poles of

C(s', and K(s), or In other words, the eigenvalues of the A and E matri-

ces. We define, then

0,()= det(sI A)-det(sT F ) (2C.24)

Following the derivation done In Section ?.2-4, we realize that

4) -(s) = e&t(sl - E)*detfal - A + RK(s)Cl (2C.25)

We c.~n now rewrite (?C.23) to show the relationship between 4,(s) and

4.CL (s 01 (s)'detfl + G(s)K(s)1 (2C.26)
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wher an L ae given In (2C.24) and (2C.25). Becouse of
CL(S) 01..s

the definition of 'P (s) shown In (2C.24) and to Insure both sIdeF are
OL

polynomials, we have not cancelled the term det(sT - F) on both sides of

(2C.23). If K(s) is a pure gain matrix, then the realization In ('C.4

2C.6) does not exist. If we let K(s) -K, then (2C.23) becomes W

det(sl - A + BKC) - det(sT - A)-det(I + C(s)K) (7.7

If K is identity, then (2C.27) becomes

det(sT -A + BC) =det(sT -A)-detfT C(c)!

which is the same result s obtained In Section 1.1-4.
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Appendix 2D

A brief explanation of relative primeness of polynomials to understand

equation (2.131)

A monic polynomial Is one whose highest degree term has a

Pxairple: Consider the polynomial f(x)

f(x) = f xn + f xn-i1
n n-i o .

The ,,olynomial f(x) is monic If f n= 1.

Pcommonivisoro polynomials a (x), a (x), ...,ak Isx a

polvnomial. which divides each a (x) without remainder.

The greatest common divisor (g.c.d.) is the unique monic common

cdivisor of highest degree, and Is itself divisible by any common

divi sor.

Fxample: Consider the following factored polynomials:

;1 (x) (x+3)(x+5)(x+10)

For tis se of plynmas the commo divisors are

2

c (vio,X sc s(+3), (x+ ]0 ord (x 2 + 13 x + 30) .

A set of polynomials is said to he relatively prime if the g.c.d. * .~

has zero order (i.e., equal to unity).

Example: Consider the following factored polynomials
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'4a 1 (x) =(x+J)(x+3)(x5)

a() W (Y+3)(x+9)(x411)

a Wx (x+5)(x+ll)(x+17)

NThere is no common divisor for all these polynomials except unitv. -. ~
Therefore, the g.c.d. Is unity, and a I(x), a 2(Y) and a 3(x) are

relatively prime. However, the groups fa (x), a Wx1, fa Wx, a (x)
1 2 2

and fa Wx, a (x)] are not relatively prime, as each has a non-unity

g.c.d.
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Appendix 2F

Definition of right coprime factorization (r.c.f) to understand

equation (2.136)

Suppose G(s) Is a transfer function matrix with real coefficients. ~ ~

An ordered pair (N ,t D r) Is called a r.c.f. of C(s) if:

r r

polecz is greater than or equal to the number of zeros) stable transfer ~-

function.

(ii) D (s) Is saunre, non-singular and
r

C(S) N(S)f (S)
r r

(III) There exist matrices X (s) and Y (s) such that

rr

for all s (this Is called a Bezout identity).

The left-coprime factorization of G(s) I De(s)1'Ne(s) can be defined

analogously.
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Errata for Chapter 2

2.1.4 Definiteness of Matrices .

Any matrix: A can be written as

A =A 4A
s skew 4

where A CZIs the symmetric portion of the A matrix, piver Ihy 1

S T 1
A S (4A + A)

arnd A , Is the skew-symmetric portion of A, given by

A'qkew A As

Wyhen definiteness of a matrix Is determined by using eigerivalues, It is

based uipon anlv the symmetric portion of the matrix. Tn the notes,

whereA-Pr definiteness Is defined through elgenvalues, we assume the

matrix A has been repl.pced by the symmetric portion of A.

t.ppendix 2F

In the last line, C(s) =N T(s)] 1D (q) should be C(s) fl= slV()

(Thapter P eferences

Tn Reference 11, '111 -Op~timal..." should read "110 -Optimal...".

CC~
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3. ROBUSTNESS ANALYSIS

3.1 Introduction

Any mathematical model can only approximate the behavior of a

physical system. The problems created by model uncertainties (such as

parameter variations, unmodelled or incorrectly modelled dynamics, etc.)

hAve often been either trivialized or ignored in theoretical studies in

favor of assuming the alternative of no distinction between models and

reality. Stobility and good performance in the face of these

uncertainties is precisely the issue under study in this chapter.

In designing a feedback compensator, one nominal model must be

selected from a class of models that approximate the physical system's

behavior, denoted by G . Once a nominal model has been selected, an

associated class of modelling errors is defined implicitly by the

deviation of any model in C from the nominal design model. When a

compensator is designed using this nominal model, the resulting feedback

system is said to be robust with respect to the class of modelling

errors if it remains stable when the nominal model is replaced by any

other model In G. "therwise, the feedback system is not robust.

The original work in this area was done by Safonov [3-1,3-2], who

generalized an approach of Zames f3-3,3-41. Doyle has since extended

the works of Safonov and Zames [3-5,3-6,3-71. There are many other

people who have dvne excellent work in this area, but are not shown in

the reference list of this chapter.

It should be pointed out that there are two types of robustness --

stabil.tv robustness and performance robustness. 1I' a closed-loop

system remains stable In the face of uncertainties, then that system is

3-1
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said to possess stability robustness. If the performance of a

closed-loop system in the face of uncertainties is acceptable, then that

system is said to possess performance robustness. r

This chapter addresses the stability robustness problem oply. We

do this because it doesn't make sense to study various techniques for

performance robustness without studying the stability robustness aspects

first. Ultimately, the control designer has to make a trade between

stability and performance robustness. This trade-off, as well as

performance robustness issues, will be addressed starting fror

Chapter 4.

This chapter highlights four technical papers by Yeh, Banda,

Ridgely, and Yedavalli, which were presented at various conferences and

are due to appear as Journal articles in 1985. The actual papers appear

in Appendices 3A, 3B, and 3C. The reader of these notes is urged to

study the material in these Appendices carefully so that he or she can

appreciate the techniques. To assist the reader in this regard,

sections 3.2 - 3.4 outline some of the major points and discuss the

implications and limitations of the results. Tn these sections, the

numbers of the equations, figures, theorems, etc., refer to those in the

papers in the corresponding appendices, unless otherwise stated.

3.2 Remarks on Appendix 3A

The most familiar types of errors are probably those of absolute

and relative errors. Absolute errors are additive in nature whereas MT

relative errors are multiplicative in nature. One can use both types of

errors to derive robustness theorems. Tvpicallv, errors in hiph"

frequency dynamics (neglected either due to ignorane or due to

reduced-order modelling) are chAracterized by additive perturbations

3-2 l
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(FIR 1). Multiplicative perturbations are represented in Fig 2 at the

input to the plant and are called input multiplicative perturbations. Tf

these are represented at the output of the plant, then they are called

ottput multiplicative perturbations. Typically, errors in actuator and

sensor dynamics are modelled by input and output multiplicative

perturbations, respectively. Since the familiar notions of gain and

phase margins are associated only with relative errors, multiplicative

type perturbations are used to calculate these margins, which will be

discussed further in Section 3.3.

Let C(s) indicate the nominal open-loop transfer matrix (i.e., it

includes the plant and the controller). Let G(s) indicate the perturbed

open-loop transfer matrix. Also, let E(s) generically denote the

particular modelling error under consideration. Then, additive

perturbations can be thought of as

E(s) = Cs) - G(s) (3.1)

arld multiplicative perturbations can be thought of as

F(s) = C-(s)[C(s) - G(s)) (3.2)

or

E(s) = [z(s) - C(s)]C (s) (3.3)

Suppose that instead of measuring the absolute and relative errors

between Cn(s) and C(s), we measure the absolute and relative errors

between ,-(s) and (-(s). rn the SISO case, this would correspond to . j

r msuring the absolute and relative errors between the nominal and

perturbed systems cn an inverse Nyquist diagram, Ir which the inverse

l p(i transfer functions (s) and g (s) are plotted. The inverse

Nyquist diagram cau also be used to determine stability by counting .-. -

encirclements of the critical points (0,0) and (-1,0) in the complex

3-3
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.P plane. For details see the textbook on control systems by D'Az7o and ,._.

Houpis (Ref f3-8]). In this case, the characterization of the error is

referred to as Inverse additive (Fig 3) or inverse multiplicative (Fig

4) perturbations. Typically, we model the errors associated with mode

shapes and right-half-plane pole locations using either inverse additive

or inverse multiplicative types of perturbations. The inverse additive ,-.

errors F(s) can he thought of as ''

F(s) ( (s) - - (s) (3.4)

and the inverse multiplicative errors E(s) can be thought of a"

E(s) G(s)[ - (s) sC () (3.5)

or

F(s) (s) - G-(s)]G(s) (3.6)

The merits and demerits of modelling a particular type of error

using one characterization versus another are not well known. For

example, one could model the errors associated with high-frequency

dynamics using multiplicative perturbations instead of additive

perturbations. There are no "rules of thumb" to decide which is the

best way to characterize the uncertainty. This still remains an ope.

question in current research.

Typically, the robustness tests have the following forms. The

magnitude (or norm) of the modelling error (or uncertainty) is

characterized by a nonnegative frequency-dependent scalar function. The

measure of robustness is also characterized by a nonnegative

frequency-dependent scalar function that represents the magnitude (or

norm) of a certain matrix related to the feedback system. The

robustness tests consist of a comparison of these quantities for all

-' frequencies on the Nyquist contour.
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Let us concentrate on additive and multiplicative perturbations

only, since they can be used to represent a large class of

uncertainties. The following table summarizes robustness tests for

these two types of perturbations (also see equations (1) and (2)).

Table 3.1 Summarv of Sin ular Value Stability Robustness Tests

Type of Error Criterion .,' .,

Perturbation Perturbed System and

Stability Test

Additive E(s) = *(s) - G(s)

G(s) = G(s) + F(s)

• fF,~l< _01 + C(s)"

Multiplicative E(s) c-l(s)[V(s) - G(s)]

a(s) = G(s) T + F(s))

c5[E(s)1< [ I 4 C- (s))

The proofs used to derive the stability robustness tests shown in

Table 3.1 are based upon Multivariable Nyquist Theory. Interested

readers can look into the references listed at the end of this chapter. ."

There are several assumptions made in deriving these results. One of

thp important assumptions that we will be requiring later is that the .'. -

nominal closed-loop system must be stable in order to apply these tests.

ThI, shouldn't cause too much concern since nominal closed-loop systems

are designed to be stable. Implications of this particular assumption

will be discussed further in Section 3.3.

Given a plant and given a controller, the loop transfer matrix G(s)

is completely known. For additive perturliations, calculation of the

minimum singular value of the matrix I + G(s) will give an upper-bound

OTI the uncertaintv matrix that the system can tolerate In order for the
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closed-loop system to remain stable. In other words, if the norm of the

e, error matrix E(s) is less than 0[I + C(s)] for all. frequencies, then

the closed-loop system is guaranteed to be stable. However, it should

also be pointed out that if the norm of the error matrix F(s) is greater

_ than o[I + C(s)] (i.e., if the test fails), the test is inconclusive.

This means that if the design falls the test, the closed-loop system may

or may not be stable and It requires further exarination. The reason

this happens is that these tests assume the error occurs in the worst

possible direction. For multiplicative perturbations, we use I + G-(s)

instead of I + C(s) in the robustness tests.

Because these tests are only sufficient conditions, not necessary

and sufficient conditions, they may give overly conservative results for

some systems. This should not, however, be looked down upon 4n general,

because these norm-bounded robustness tests give rise to a great deal of

theory that answers other Important questions. It can, for example,

give answers to the questions posed in the example of the paper. These

types of questions couldn't have been answered before the development of

this theory. In addition, this theory allows us to clearly define and

compute multivariable stability margins. Finally, this theory can be

extended to give a synthesis procedure that accounts for uncertainties.

We should notice that the tests use only the magnitude of the

modelling error and do not exploit any other characteristics or

structure of the model error. Hence, they are based on the unstructured

part of the model error. In other words, these tests give only a scalar

bound on the entire uncertainty matrix. However, it Is possible to give

bounds on the individual elements of the uncertaintv matrix usirr

weighted t1 and . norms.
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Table 3.2 summarizes some of the results of the paper. The

following notation is i'sed in the table. We let '.

A(s) =[I + C 0s (.7)

wbere C (s) refers to C(s) or C (s) for additive or multiplicative

perturbations, respectively. (Aj indicates the magnitude of a for all %

1, j. X(II) indicates the Perron eigenv~1ue of the matrix A (the

Perron eigenvalue' of A is the positive elgenvalue of JA 1which is

grepter than or equal to the magnitude of any other eigenvalue, and the

corresponding eigenvector is the only one that has all positive

components).

Table 3.2 Some Stability Robustness Tests with Structured Uncertainty

Theorem number
in the paper [comments] Test

Jonlv when F(s) or C(s) Tf JF.(s.)Jl < I/f A(s)JJ
4- t diagonal matrix]j

[only when E~s) and C(s) m ex e(S)I1 a
'qre triangular inatricesi lai

L!any F(s) and G(W) IF(s)l < IA(s)i/ 2[A(s)II

5
[any F(s) and G(s)1  majIs 1  /n (x.r.s.[m.c.s] of IA(s)I)

6 m.r.sfm.c.s] of IF,(S)l
fany F(s) and C(s)l < /nrs.mc.Jof lAWsI

m.r.s. -maximum row sum

n.r maximum column sum
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Notice that Theorem 3 yields bounds on the magnitude of all the .

elements in the uncertainty matrix F(s). Obviously, this gives a great

deal more Information about the system when compared to obtaining a

single bound on F(s) using singular value tests. Also notice that when

E(s) and C(s) have triangular structure, Theorem :. permits the off-

diagonal elements of E(s) to be unrestricted in magnitude. Theorem 3 -

doesn't impose any restrictions on F(s) or G(s) and is applicable even

when E(s) and C(s) are triangular. This is why Theorem 2 gives less

conservative (better) results than Theorem 3 when F(s) and G(s) are

triangular. Nevertheless, Theorem 3 provides a way to structure E(s)

when (s) is not triangular, which cannot be covered by Theorem 2. To2.

appreciate the use of the theorems shown in Table 3.2, the reader is

strongly recommended to carefully study the example given in the paper.

Before we close this section, It must he pointed out that the

robustness analysis methods we have discussed so far are for the case

where only one uncertainty was considered at a time. In reality we may

have multiple uncertainties in a given system. For example, consider a

system with both input and output multiplicative perturbations, as shown

in Fig 3.1.

r=O G s) "' Y"--"K)-4 I+El s W(sW)+ (S) ---- I.,-:

K(s)
Fig 3.1 An Example of a Block Diagram With Multiple Uncertainties

3-8
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The analysis of such systems has been done by Doyle using his structured

singular value technique as discussed in Ref 13-6]. Consider Fig 3.2 ,VW

shown below. log

r= + YV .' ,-- -.

M(S

Fig 3.2 An Equivalent Block Diagram to Fig 3.1

Doyle shows that Figs 3.1 and 3.? are equivalent (for a zero input) if

M(s) is chosen, for example, as

(I + KC) KG (I + KG)-K
11(s) = 03.8)(,+.'(','.38-(T + CV)- I C (I + CK)- I CK + --'"

In other words, Figs 3.1 and 3.2 are equivalent from a closed-loop

stability point--of-view If 11(s) is selected as shown In (3.8). In Fig

1"' A (S) Is given by

r (S) 0
A(s) ( (3.9)

(F.,s)

Similar equivalent HTeck diagrams can be dravn even when we have more

+rnn two uncertainties. Doyle shows that the nondestabilizlng hounds or

the ,ncertainties !',(F) and F 2(s) are given by a -salar function, ,
1 2 ~ re gien by se-l-r'.', .H,-I

v ich he call; the structured singular value, wh-ere

* = Inf ?7'(D1I) (3.10)
D

Thi--u formula is good orly if the number of unceTtainties is less thail or

equai to three. Ip (3.10), D is a real diagonal weighting matrix. If

3-9 e
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the number of uncertainties is more than three, the formula for i is 

much more involved than (3.10), and is not shown here. If only one

uncertainty is considered, V is the same as 'j: . .
, . .- .

Although the structured singular value Is a much more versatile

tool than those previously discussed in this section, its computation is

a different matter. First, note that if the dimension of C(s) is (nxn),

then M(s) is (2nx2n), and so is D. Equatior (3.10) requires calculation

of the infimum of G(DMD - ) over all D. This requires a search for the

optimum D over a 2n-dimensional real space with all possibilities

allowed. To the knowledge of the authors of these notes, very few

individuals or organizations besides Doyle and his co-workerF hal'e the

ability to easily calculate V1 for a general case. Calculation of P

becomes much more simple, as can be expected, in the case of 'I SO

systems, because then D is (2x2) and a search for the optimum ratio of *':-,

the two diagonal elements can be done over a ]-dimensional real 'pace

easily.

3.3 Remarks on Appendix 3B

This appendix contains two papers on stability margins (iegain

and phase margins) for MIMO systems. For SISO svstems, single-input

multiple-output (SIMO) systems, or multiple-inpbt single-output (MISO)

systems, we open one loop at a time and allow the gain or phase to vary

in that loop alone. By keeping the value of gain and phase in the other

loops at nominal values we can calculate the stability marpins for that

loop using graphical techniques, like Bode plots, Nyquist plotc, otc.

However, It Is not obvious how to calculate the stability margins for

MIMO systems because they not only have multiple loops, btit .lso have

cross-feed transfer functions as well. For MIHO systems, what we need

3-10
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Is a method that allows us to vary all the loop gains or loop phases

simultaneously in order to calculate the stability margins.

The key to doing this is to assume diagonal perturbations in the

stzbility robustness tests that we discussed in Section 3.2. This

diagonal-type perturbation will make the problem tractable and will

yield simple-to-use formulas to obtain stability margins. Consider Fig

I in the first paper. Let the diagonal perturbation L(jw) be

L(jw) = L (iw)K(jw) (3.11)

V. re .

Y(jw) = diag[k l(jw), k9 (.w). .... k (w)] (3.12)

and either

j 1(w) j (w) n (w) ,
Ll(jw) diag[Bl(w)e , 2 (w)e e (3.13)

2 n

or
j (we. ) '

L (w) = (w) (3.14) -. ','.

Equation (3.13) is used for obtaining independent margins, and equation

(3.14) is used for obtaining uniform margins (see paper for definitions

of these). The matrix K(jw) shown In equation (3.12) is used to update

the nominal system. Before we start the first iteration, we let

K(iw) I

For input multiplicative perturbations, we have the following

:stability robustness tests

IL- 1 < 2 1i + (1CY) 1 (3.15)

or

l 1 - 1 < a IT + HCK1 ,I a 1 (3.16)

Fettation (3.15) is thf. same as the one shown in Table 3.1, using the

flota t i fn of Fiy 1 In the first paper of this Appendix. Equation (3.15)

is written based oil Inverse Nyquist criteria, whereaF ecuation (3.16),

3-11
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another type of robustness test, is written using Yviuist critrri. W~e

can also rewrite (3.15-3.16) in terms of eig~nv.1u".i a,,

or m X1[L - TI < ~~ [T +(fICY)]I(3

max [1 11 < min X rT + FGcvi Cl I .P)

The proofs for (3.17-3.1S) are given in the first p~aper. To obtpiT..

independent margin', we use (3.13) In (3.15). If we let

1W) = 02 w M *. (w) 0, then we obtain Independe't gain .rI.1 2 n

(TOM), and If we let 8(w) = 82 w) 6 (w) =1, then we obta~r. .

independent phase margins (1PM). Similarly, if we substitute (3.114)

into (3.17), it will yield uniform margins. Substitution of O(w)

gives uniform gain margins (UCM) and B(w) I gives uniform phase

margins (11PM). Since (3.16) and (3.18) are also stability robilstness

tests, substitution of (3.13) and (3.14) into those equations will '4 1so

result in independent and uniform stability morgins, respectively.

Since (3.15) and (3.16) both yield independent stability margins anid

* since both of these inequalities are only sufficient conditions, thpir

union also gives independent stability margins and is less conservoti-e

(i.e., wider margin). Similarly, less conservative uniform stabilitv

* margins are given by the union of (3.17) and (3.18).

In what follows, we will show the derivation of thie formula,- for

* 1GM and 1PM. Substituting (3.13) Into (3.15), we Pet

a~~di2 [(e1j 1e~~1,.,Be -) <~ + (ICK) 0 (.10)Fflg* g 1  -l, 2P en - }g

To get 1GM, we let

B1  2 ... = n 0(.0

and

a1 =2[T + (HOY) ~l(3. 21)

3-1.2



Then (3.19) becomes

-{diagf(! - l), ( - 1), ... 0 ( - 1)1 < a (3.22)
2' n

which can be writter as , . -

maxi
i J - I < a1  (3.23)

f the largest 1 Is less than a1 , then all of them must be, so %

thbt

--8', - 1i 1  (3.24)

which may be rewritten as

-- aI < 8  (w) < 1 + a (3.25)

The terms ! + a and I - a in (3.25) are the upper and lower bounds ef

the CN!. To get the 1PM, we let

l B (3.26)

Usi ug (3.21) and (3.26) in (3.19), we get

je2 ne18 ... . in--
d{cdagf(e 1) (e- 1, e ])1<a(.7

so that

eleY O I < (3. 28)

This implies

I 1< 81V (3.29)

which may be rewritten as follows

"cose + -'nO. O 1< a1  V (3.30)

. (Cosa -1 1 + -inO l< '1  v i (3.31)

rcos' 8 - ?c-sO. + I + sin < a v i (3.32)
1.

(r1 - cos) < a V 1 (3.33)

f-f2sin (0 /?)1 ). a i (3.14)

Tli- hbove equation yield"

,e. ;An(O 12) < al! /2 (3.35) ".i ",
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...

-sin(o /2) < a /2 V 1 (3.36)
'V..,-,.. .

Equation (3.35) and (3.36) can be written as

6. < 2sin (a /2) ¥ 1 (3.27)

and

6 > -2sin (a I/ 2) 1 (3.38)
i

Equation (3.37) and (3.38) may be combined to give

-2sin (a 1/2)< 6 (w) <2sin (a /2) I I It 4 2 (3.3))

and

-ff < (w) < IT O I if a 1 (3.40)

Equation (3.40) Is true since 2sn- (a 12) lies in between -Tr Tr ,-

which are the principal angles. Equations (3.39) and (3.40) pivo tbe

upper and lower bounds of the IPM.

Substituting (3.13) Into (3.16) and doing the algebra showIn in

(3.22-3.40), we can obtain the 1CM and IPM again as

< (w) < (3.41)

1+ i- 1

-2sn- (a 1/2) < 0 (w) < 2sin- (ai 2) ' I (3.49)

where

A = UrT + iiGcy (3.43)

The union of (3.25) and (3.41) will also give 1GM (i.e., the larger and

smaller numbers of both the upper and lower limits). .imilarlv, thc',

union of (3.39) and (3.42) will almo pive TPV.

Recall that for diagonal matrices, singular values and eigT'values

are identical. Substituting (3.14) Into (3.17) :nd (3.18) and following

the same algebra as before, we obtain formula,: for the T'CM and UI'M as

I -a < (w) I + a (3.44)
0

-2sin (a /2) < O(w) 2sin (a /2) if a (3.45
0 0 0
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-IT <~ 0(w) < it if a >2 (3.46)
0

where a ~+(.7

a X T + (HCK) (347
0

and

1 a < 8(w) < (3.48)

-sn (a / < O(w) < 2sin (a /)(3.49)

whre

a(, mlin X xrT + HGKII(.0

Fqiiations (3.44), (3.48), and their union all give formulas for

r calculpting the UCV. Similarly, equations (3.45), (3.49) and their

union all give formulas for calculating the UPM.

Consider Fig 3.3, which doesn't represent any real physical system

1'er se, but helps explain several points.

P(DB)

Q ~actual region -:'

of stability

S ~UNSTABLE) L*

STABLE

- A B

D. P(DB)

F

FIg 3.3 Pegion of talilltv in thc Cain Space
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Let's suppose that the MTMO system Fig 3. corresporcs to is a '-input

2-output system. The axes B and 2 correspond to changes in (!, loop
1 2

gains (in dB). Pefore the system Is perturbed (i.e., the nomir; V-

system), the loop gains are at their nominal values, which correspords .-

to the origin in Fig 3.3. Suppose that fa,bj is the ICM in dB using the

union of (3.25) and (3.41). This means that as long as the chanipes In R'"

the loop gains 1 and 2 lie within the limits fa,hl, the closei-loop1 2
system is stable. Since by definition of the TCI, B and S, can take

I

any value within [a,b] independently and simultaneously, the repion of

stability Is given by the rectangle ABCD. The coordinates of ABCD in

terms of a and b are given In Table 3.3.

Table 3.3 Coordinates of ABCD in Fig 3.3

Point Coordinates

A (a,b)
B (b,b)

C (b,a)
P (a,a)

Bence, the definition of CM guarantees that as long as the ch'Tges in

the loop gains remain within the rectangle ABCD, the closed-loop svste-'r

is stable. The second paper in this Appendix proves that ever, point on

the boundary of ABCD is also stable, so long as _11 + IVCK! # 0 anywhere

on the boundary.

Now let us study the line segment EF. Suppose that fc,dj is the

UC! in dB using the union of (3.44) and (3.48). This means that as long W

as each loop gain Is changed by the same amount somewhere within rc,dl,

the closed-loop system is stable. THs corresponds to the line .;egment

EF with slope equal to +1 and passing through the nominal operating

3-16
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point. The slope of this line Is +1 because every point on this line

corresponds to the sare change in loop gains 8 and 8 The coordinates

of the points F and F are (d,d) and (c,c). The deflnition of UG4 _

-. guarantees that every point on the line segment EF is stable. The

Pecond paper in Appendix B proves that the end points E and F also V

correspond to closed-loop stability when r. [ I + HGK1 1 0 at those

points.

Recall that

2(A) = I/ (A- ) (3.51)

an o

m max I(A-I).

=1/ P (A- ) (3.52)

were P(.) is the spectral radius of the matrix in the parentheses. The

spectral radius of v, matrix Is always smaller than or equal to any other

matrix ,orm. That is,

P(A - I  4< (A - I  (3.53) . ",

1-1i-1c'ber efore "..:-

In) (A) >0 (A) (3.54)

if We let

A T + (1ICK) -  (3.55)

then using the notat-ion of (3.21) and (3.47) , we have

a sa (3.56)
0

TT;;rig a similar arpment we also have (using the notation of (3.43) and

CL a (3.57)

Tberefore, the EIGH iivenr by formilas (3.44) and (3.4R8) will be larger
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tha o eqalto the WIt1 g~e by forua (3.25) ad (3.41).

0, Therefore, the UGM are less conservative than the 1GM in a particular

direction. However, UGM give only line segments whereas 1GM ~

rectangles covering an area In the gain space. Tn the case where there

are n loops, we will get hypercubes for the ]CM, but the L01! will still

give ]-dimensional line segments In the r-dimensional space.

Let's refer to Fig 3.3 again. The actual region of stability for

the system under consideration may be given hv the curve joining the

points PORS as shown in Fig 3.3. As long as changes in the loop gains

remain within this region, the closed-loop system is guaranteed to he

stable and every point outside this region corresponds to clcotd-!oop

instability. Recall that the UGM and 1GM formulas arc derived from

(3.15-3.18), which are only sufficient conditions. This means that the

changes in loop gains corresponding to the poinits outside the rectangle

ABCD and off the line segment EF may or may not n~ake the dlosed-loop

system unstable. Our goal Is, somehow, to generate the entire actual

region of stability PORS. Since closed-loop stability is guaranteed for ~

every point on the boundary of ABCD, we can do iterative calculations of

the UGM and 1PI. For example, suppose we choose point A. We icnc' that

the changes in loop gains corresponding to that point are (a,h) it-, dP,

and that the system is stable there. This mrcans that we can conn,!Prt

(a,h) into actual magnitudes and use those gains aE the diagonal

elements in the Y~ matrix In (3.13), i.e., define A ap a new nominal

operating point. TUGM and TGM can then be calculated and plotted usinp

point A as the origin of a new coordinate system. These iterations may

he done successively until a , al a r( becomes (close to) ?pr(,.0

3-18



%-

The formulas for TPM and UPM can be used similarly to generate the

entire region of stability in the phase space. See the second paper in %-A

Appendix 3H for one possible iteration scheme.

The actual region of stability in the gain or phase space could be -

obtained, If desired, using independent margins alone (instead of

combination of independent and uniform margins). However, since uriform
,-

margins are less conservative in a particular direction, the actual

boundary of stability will be reached using fewer iterations if uniform

margins are used. Generation of regions of stability using only uniform

margins is not possible since they generate only 450 lines. Stable

replons not on a 45' line couldn't be obtained in ar iterative fashion;

rather, one would have to first check for nominal closed-loop stability

at some other point (recall that these margins are derived from

norm-bounded stability robustness tests with the assumption that the

nominal closed-loop system is stable). Application of Independent and

unform margins together gives an efficient method for computing the

entire regions of stability, because the answers from one iteration lead

into another iteration, and the number of iterations is minimized.

Finally, it should be noted that after generating the stable

regions in the gain and phase spaces, one could double check the

bourdAry in the gain space easily by computing closed-loop eigenvalues

-i* points on the boundary. Such a check is not possible in the phase

space since we can't write a transfer function corresponding to a pure

phase shift. Also realize that zlthough the method discussed here is ... --.

good for n-loops, the solution is not tractable grapbically for n > 3. . .

AdI.tionaqlv, if there are completely detached stable spaces, this

method will identify only the one containing the nominal system.
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.... -.

Lastly, a brute force application of SISO gain and phase marpin formulas

(by successively perturbing the system) will also generate the actual

regions of stability, but could take considerably more computations an

does not lend Itself to computerization very well.

3.4 Remarks on Appendix 3C

This Appendix contains a paper on the area of time-domain

robustness analysis. One of the goals in research on robustnes:-

analysis is to obtain bounds on the tolerable perturbations (from the

stability and performance viewpoint) of the rea! parameters (such as
.,...,:.

stability and control derivatives). To meet such a goal, formulation of

the problem in the time domain seems appropriate, since in our

previously described frequency-domain formulations, information about

real parameter varitions is imbedded in the singular value bounds on

the transfer matrices. However, concepts such as gain and phart margins

(which are tolerable loop gain and loop phase variatiors) can onl,, he

handled in the frequency domain.

Time-domain robustness tests give explicit bounds on the real

parameter perturbations in the A, B, and C matrices of the state-space

model. We will consider three classes of perturbations, as follows:

I) Highly structured perturbations: Perturbation model structure is

known and bounds on the individual elements of the perturbation mtrix".

are known.

II) Weekly Structured Perturbations: Perturbation model structure is

known, but only a spectral norm bound on the perturbation is known (with

no knowledge about the Individual element bounds).
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TIT) Unstructured Perturbations: Perturbation model strtucture Is not

known.

For simplicity, we will use the terms "Structured perturbation" for

41 class~ (I) and "unstructured perturbation" for classes (IT) and (III)

from now on. For a good discussion on unstructured perturbations, see

'Ref ri-91. We are not going to cover thant material becauise we are only

intereste6 in obtainitijg hounds on individual elements of the A, B, and C

* matrices.

Consider the state space model

x=Ay YY (3.5F)

where F is the perturbation matrix with structured perturbations

le (3.59)

The svstmr A + F Is stable(, if

ei imay C <UEi * 1= /3[IPIU)]S (3.60)

*where is 4 the solution of Lyapurov matriy equation

1' 4 PA + ?T 0 (3.61)

ant' I" is an (nxn) matrlx with all elements equal to unity. The symbol

rneai - modulus of every element in the matrix, () indicates the

svmiet.4i portion o'the matrix in the parenthesis (i.e., freape

(A) G', + and V-~) Indic,-tes the maximum singular value of the

(Irtion of the Lyopunov equiation crr he ;vrolded if A Is nornial,

i.e., J4~ AA\ A A. Tben (see Fef [3-101) the systen A, i s stable if

lmax E<PYF -T (.2

Tfciin get an) ev-en 1better hounrd than in (1.60) (or (1.62)) If

;trctr, nfornirtioii f-F thp Tmatriv A is tal'cn Into rcn YOerntiop. For
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A r[ i,i 1 2, ni(.3

we may have the additional knowledge that some of the elements of A ire

not subjected to any perturbations, I.e., .6
e Aai = 0 for some I and I C3. 4)

Tsuch a case, a better bound can he obtained by substituting for file

matrix U (in (3.60) and (3.62)) a matrix U whose entries are such thatn Ti

TJ 0if the perturbation In a,. is 'Known to be zero (i.e., e

eji

*and 11 e 1j if the perturbation in a. ij s known to be non-zero (i.e.,

e 0 0). This means that IT is r' matrix whose entries arc normqli7(.!

with respect to the maximum perturbationAa"I
i*llm4x

Thus, the entries will have the values 0 or 1, depending upon the

* location of the perturbation. Then, (3.60) and (3.6?) can be rewritten.

as

e C <11 Y = 1/7 [(IPIUec (3.66)

* where P is the solution of (3.61), and

lej imax = yeS=~ I'1es (3.67

To apply (3.66), consider an example where

-2 (3.6P)

The results are shown In Table 3.3, which clearly indicate that the

perturbation location directly Influences the perturbation hound.

44 ~3-22 .. '
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Table 3.3 Effect of Structural Inforration on Perturbation Bound

Elements of A in which perturbation is ass.ud

all a1 1  12 21 22 11 1l&  l& :12& l2 21 a. all, all a 12I

ai only only only only 12 a 21 21 a22 a22 a12 , a12 . a21 ' a21,'21 "22 22 822

rir 1 f~1 I 1 0,~1 nUL 1j{} [Co[O 0:[0 it 11i LoJ[0 J 0 0 1 [:?J L0JL' L' L0'] '0 [

116yS 0.236 1.657 1.657 0.655 0.396 1.0 0.382 0.48 0.5 0.324 0.3027 o.397 0.311 .273 0.256

These results can be extended to the case of LO and LQG Regulators.

Following the notation used in the paper in Appendi: 3C, we have that

the perturbed closed-loop system of the LO Regulator Is stable if

(AA + ABIG + B + AB FAC)limax
= '/5' {(lP g ) s (3.69)

where AA, AB and AG are perturbations In the A, B and (controller gain)

C matrices (there is noAC term since we assumed full state feedback),

and P has to satisfy the Lyapunov equation

A P + PA =-21 (3.70)
where ACI, is the nominal closed-loop system riatrix given by

ACL = A + BC (3.71)

ThL matrix U can be replaced by U as before, If the locations of thefl e 
i : : :

perturbations in A are known. Tf there are ro perturbations in the E -

and C matrices (i.e., AP = AC = 0), then (3.69) give, bounds on the

maimum tolerable variations of the real parameterr in the A matrix.

3i:-iiarlv, If AA --AC - 0, then (3.69) gives bound,- on the perturbations

In the 1' matrix, and sr . n. In the case of the I.C roblem, the
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nondestabilizinp bounds or the real paramieters ire Fiven by P!u'ition

(26) in the paper Pre will not be repeated here.

Before we close this section, ule shonld imote the fol ]owitp. The

e ~~robustness tests in the frequency domain are derived based on !'vquif-. .r
N.t

stability criteria, whereas in the tine domain, thtey are deri'cc' based

upon Lyapunov stability criteria. These robustness inecuality tu-5L. inl

both the freruencv and time domains are only sufficient conditions,

Vi.e., if the design passes these tests, the closed-loop syster, .'r

guaranteed to be stable; otherwise, no claim can be made regarditig

stability. These tests in both domiains are conservative. 'lilp happers"

in the frequency domain because the tests assume that the unceiteintv is 2

In the worst direction (i.e., lack of phase ir~formation). Jn the t~re '

donaen, the robustness criteria actually give the conditions under which

perturbed matriyr will bk negative definite. 'h is i s done because all

negative definite matrices are guaranteed to be otahie. Ti-c prvblem

.r with this is tl-At all stable matrices are not necessarily nego't1'e

*definite. This leads to a conservatlve result. The criteria in both1

domains assume that the norinal closed-loop s;vstem (bcfore it iv

perturbed) is stable, which should not be a rcncern.

3-24 .'.
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(This paper was published in the International Journal of Control, Volume 41,

Number 2, February 1985, pages 365-387.)
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STABILITY ROBUSTNESS MEASURES UTILIZING STRUCTURAL INFORMATION

Hsi-Han Yeh , Siva S. Banda*, and Capt D. Brett Ridgely*
AFWAL/FIGC Flight Dynamics Laboratory

Wright Patterson Air Force Base, OH 45433

Abstract

This paper presents techniques of using weighted I and o norms to

*incorporate the structural information of the return difference and the

perturbation matrices in the measure of stability robustness of

multivariable control systems. The flexibility offered by these norms along

with the use of nonnegative matrix theory enables one, in most cases, to

* reduce the conservatism which has been a typical concern with the use of

singular value based stability robustness tests. New stability robustness

criteria are derived on the basis of weighted and k norms. Examples are0-

given to demonstrate the merits of these methods over singular value tests.

I. Introduction

One of the intriguing problems in the extension of the classical

frequency domain analysis and design techniques for single-input, ,

single-output (SISO) feedback systems to multivariable feedback systems is

perhaps the measure of relative stability [1-3]. The one-loop-at-a-time

stability margins fail to account for the simultaneous variations and

crossfeed changes in a multivariable system. Extensions of the Nyquist

method to multivariable systems [4-61 also fail to reveal the nearness of a

stable multivariable system to instability.

...- . ..
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In recent developments 12], 17], the robustness of a multivariable

system, i.e., the nearness of a stable multivariable system to instability

when subject to plant perturbations or uncertainties, is measured by the

I singular value of the return-difference of the loop transfer or the inverse

loop transfer matrix. For various models of plant perturbations or

uncertainties, the robustness criteria may be summarized [81 as either AW

F[E(s)] < 211 + G(s)] (I)

or

j[E(s)] < .1 + G-l(s)] (2)

depending upon the modeling of the plant perturbations, where 2(-) denotes

the miniumum singular value, T(') the maximum singular value, E(s) the

plant perturbation, G(s) the loop transfer matrix, and I the identity

matrix. In some cases, an additional restriction on '-[E(s)] is required.

These conditions impose hard bounds upon the class of plant perturbations

that do not destabilize the feedback system. In other words, for each

O(s) , S[I + G*(s)l (3) _

where G (s) means G(s) or G-(a) depending upon whether the robustness

stability criterion is given by (I) or (2), there always exists an E(s)

that satisfies

CIE(s)] . 0(s) (4)

. ......
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but destabilizes the closed-loop system, provided that the selection of

E(s) is unrestricted except in the matrix dimensions. Nevertheless, for a

given perturbation E(s), or a class of perturbations for which there is

some a priori knowledge about the structure of the multivariable

perturbation (i.e., the numerical relationship among the elements of the

perturbation matrix E(s)) the robustness tests (1) and (2) are often too

conservative. If a perturbation passes the test given by (1) or (2), the

perturbed system is stable, if it fails, the test is inconclusive.

The problem of cc%.servatism in the robustness tests for linear feedback

control systems has been discussed in several papers [31, [8-13].

Conservatism of these robustness tests may be attributed to the fact that

little structural information about a matrix is reflected in its maximum or

minimum singular values. In general, if more is known about the uncertainty

than just a simple bound on its spectral norm (the maximum singular value),

then less conservative stability robustness tests may be formulated. In the

extreme case, if the perturbation matrix is completely known, then an

eigenvalue test [9] or the Nyquist theorem gives the necessary and

sufficient condition for the stability of the perturbed system. A singular

value decomposition can be used to reduce the conservatism if there is a

significant difference between the smallest and the next smallest singular

value of the return difference matrix [8], [111]. The technique of weighting

or scaling a matrix in order to obtain a smaller norm has also been

employed to reduce the conservatism of robustness criteria [91, [10].

Eowever, the study was essentially for diagonally perturbed systems. It has

also been shown that the theory of M-matrices can be used to characterize

certain allowable perturbations and thus reduce the con.;e.rvatism of

robustness criteria, in seme cases 112].

"*
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This paper presents methods of using weighted ZI and k norms and the

theory of nonnegative matrices to account for the structural information of

f' .the perturbation matrix, and to derive less conservative stability

robustness criteria. The next section generalizes the singular value

inequalities of (i) and (2) into inequalities incorporating general matrix

norms. The basic idea of characterizing structural information of a matrix

by weighted kI and k norms is developed in Section III and the main

results are given in Section IV. Some of the most interesting results, in

contrast to the scalar inequalities of (1) and (2), are matrix inequalities

bounding the magnitude of each element of the class of nondestabilizing

perturbation matrices. Examples are given in Section V to demonstrate the

reduction in conservatism of the stability robustness criteria, and

conclusions are given in Section VI.

II. General Norm-Bounded Stability Robustness Criteria
*0 1

Robustness criteria (1) and (2) are special cases of inequalities

involving general matrix norms [9-10]. For systems with plant uncertainties

modeled as additive or inverse multiplicative perturbations (Fig. I and

Fig. 4, where 6(s) is the perturbed loop transfer matrix),

G(s) = G(s) + E(s)

FIG, 1 ADDITIVE P-RTURBATION

1-29
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iS.

G(s) =G(s)jI + E(s))

FIG. 2 MUJLTIPLICATIVE PERTUR~BATION

G<l(s) =G-1(s) + E(s) X [E(s)G(s)] '(c,-] SED1

FIG. 3 INVERSE ADDITIVE PERTURBATION

3-30



G(s) G (s) fI+ U~S)} 1

FIG, 14 INVERSE MULTIPLICATIVE PERTURBATION

the stability robustness criterion (a sufficient condition) may be

generalized as

IIEs4. < - - - - - - - ---- (5)
III I + Gs

Kexcept for the inverse multiplicative perturbation (Fig.4) where the

additional condition

fl EWsIf < I (6)

is imposed. The vertical double bars fl* denote any matrix norm. It is

worth noting here that (6) may be replaced by the weaker condition that

requires only the eigcnvalues of E(jw) not belong to the section (~31 4.

on thce real axis, for all sF:D. However, for uvost practical syster-s, the

n'inirauut value of the right-hand side of (5) for s CD) is usually smaller

R'
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than unity. Therefore, the stronger condition (6) can be used without

imposing unnecessary restrictions on the error function E(s). For systems

modeled with multiplicative or inverse additive perturbations (Fig.2 and

Fig.3), the stability robustness criterion (a sufficient condition) may be

generalized as

IIE(s)II < -(7)"

Note that for the system of Fig. 3, as stated in the figure, the additional

restriction on the eigenvalues of E(s)G(s) must be included. This

eigenvalue restriction is implied by jIE(s)G(s)J < 1, which in turn is

implied by IIE(s)11< 1/II(s)ll. Thus, a stability robustness criterion for

the system of Fig. 3 is the simultaneous satisfaction of the latter and

inequality (7). However, in this paper, the development of the robust

stability tests of Fig. 3 will be based on (7) only, assuming that the

eigenvalue restriction as stated in Fig. 3 is satisfied. Since the
,..-. -.

derivations of (l)-(2) and (5)-(7) are based on multivariable Nyquist

theory, some preliminary conditions on the nominal and perturbed systems

must hold, i.e., the open-loop characteristic polynomials of the nominal

system and the perturbed system must have the same number of closed

right-half plane roots, all imaginary poles of the open-loop perturbed

* system must also be poles of the open-loop nominal system, and the nominal

system must be closed-loop stable. Furthermore, inequalities ()-(2) and

(5)-(7) must hold for all s on the Nyquist contour. The theory here is

formulated for n x n square matrices G(s) and unity feedback systems. It

can be easily extended to the general case with nonunity feedback.

3--------3--2.
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The general norm inequalities for additively and multiplicatively

perturbed systems (Fig.! and Fig.2) follow from a simple generalization of

the derivation given in (71, and has been used in other papers [10], [12].

The general norm inequalities for the inverse additive and inverse

multiplicative cases, though not quoted or used elsewhere, can be derived

in the same fashion as the derivation of the singular value inequalities in

[21. However, because the perturbation matrix E(s) appears nonlinearly in

the convex combination of F(s) and G(s) (Fig.3 and Fig.4), the

generalization of the proofs in [21 to the proofs of the inequalities

(5)-C0) for the inverse additive and inverse multiplicative perturbation

cases is not trivial. The proof of (5) for the inverse multiplicative

perturbation case (Fig. 4) is given in another paper [19]. The proof of (7)

for the inverse additive perturbation case can then be analogously

formulated. The formulation of perturbation models into Figs. 1-4 is

attributed to Lehtomaki et al 18].

It is evident from the comparison of (1) and (2) with (5) and (7) that

the conservatism of stability robustness criteria can be reduced if norms

of the perturbation matrix E(s) and the inverse return difference matrix

can be computed to be less than their corresponding maximum singular values

( note that 2(A) = 1/ o(A - ) ). Since there are infinitely many ways to

compute a matrix norm, the idea of reducing the conservatism in the

robustness criteria here is to account for as much structural information

of the perturbation matrix and the return difference matrix as possible in

order to obtain the smallest possible norms of these matrices.

._ . . "3.



Il. Utilization of Structural Information of Matrices in Weihted
and N Norms

Structural information of a matrix can be exploited to a considerable

extent in weighted 2R and k norms. These norms have been used extensively
1

in numerical analysis [14] but are not widely used in control literature. .*,

They have been used in calculating the gain margin (uniform for all loops)

of diagonally perturbed multivariable feedback systems (101, but their

potential in reducing the conservatism of norm-bounded stability robustness

tests has not been fully exploited.

A norm of a vector is a function which assigns to every vector a real

number j~ ~such that

0 unless x 0 (8)

cx _njctj'flz-j for any a in the field (9)

+ ~ x~jxJ(10)

A norm of a square matrix is defined as a real-valued function 1 (the

same notation as the vector norm is used because the distinction will be

clear in the context) such that for any two square matrices A and B of the

same size

J1J V > I unless A 0 (11)

cxAf= cti.1JAIJ for any ai in the field (12)

3 34 -...-
*.-,'4..
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IA + BJJ< flAlt + 11B11 (13) AII,., BIIII, Hlt

IA .B < hJA Il -JIB 11 (14) ell -

The matrices are assumed to be square, which is no real restriction since %

one can always adjoin null rows and columns. A matrix norm is said to be

consistent with a vector norm if for every A and for every X. -'-

*JaJ_ JJAJJ Ik 113 h1l (15)

A matrix norm is said to be subordinate to a vector norm if it is

consistent and if for every A '/ 0 there exists an x ' 0 such that

tAx Ilu I AILY 1 (16)
* .- '.2--:

To every vector norm there corresponds a unique subordinate matrix norm

.5 defined by [14] ,* _ II

ma " "AL

A (17)

The most commonly used vector norm is the Euclidean norm - ,JIE defined by11111E,

lix E = X~x)/2 (8

where * denotes complex conjugate transpose. The matrix norm subordinate to

the vector Euclidean norm is the spectral norm 'lAfll defined as the

largest singular value of A, i.e.,
• " 4

" J.%

-- ' ', .i .;'.- .- - -' -'-. '. " . - . - . - ..- . .. -. . -. -. , .. . .. " " '
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TIIs= (A) = (A*A)] 2  X [-(AA*)l1 2 (9

here ( denotes the maximum eigenvalue of the given matrix. The

weighted R vector norm on the complex field C is given by

.PpJ

l/

f[! -lq- [l - l A i 1 I= I  / (20)

where the qi's are real and positive numbers ..-.

q col [q q2  qn ]  (21)

and

Q - diag [q] diag [q q2  q " " ] (22)
2 n

The Euclidian vector norm is a special case of the weighted k. norm when
p

Q - I and p 2. Of special interest here are the weighted k! and k. norms.

The weighted 2l norm is a special case of (20) when p 1, and the weighted

2. norm is

-(23)max (23)

where I)" fl denotes the t norm when the weight is evenly distributed

(unweighted). "" "

The matrix norm subordinate to the weightad kl vector norm ( called

g -norm by Householder [14]) is

3-36

* -__. -..



%- -- , .%°. %,'

max row sum of Q'IA*jQ (24)

where q and Q are given by (21) and (22) respectively, A' is the transpose

of A, and the absolute value sign , when applied to a complex vector or

matrix as in (23), retains the magnitude of each element and drops the

' complex phase angles. The matrix norm subordinate to the weighted I vector

norm (called g-norm by Householder [141) is

max row sum of Q JAJQ (25)

The weighted £ and £ norms are duals of one another in the sense that the

£ norm of a matrix is the k. norm of its complex conjugate transposition.

." ..
Excpanding the Q (1A(Q term oin the right-hand side of (25) shows

I II --I 1'1 1'q"L o -,,-.,

1 J-a- a'

' o -a 2 11  1 221 2n (26)

All max row sum of q q ...,

11 2" " '

q
n

3-37 .,...
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Thus, the relationship between the norm and the structure of a matrix

becomes explicit when a weighted 1 or ko norm is used. For example, if A

is diagonal, the weighted Y. or Z. norm is the maximum modulus of the

diagonal elements of A regardless of the weighting vector q. The extent to ....-

which the conservatism in robustness tests is reduced by using (5) or (7) '

*" instead of (1) or (2) depends upon the ability to simultaneously reduce the

norms of E(s) and I + G(s) or I + G s) The use of weighted k or

k OD norms on these tests provides complete freedom in selecting q to

minimize the norm of one matrix if the other is known to be diagonal. This

freedom is totally lacking in the singular value inequalities of (1) and

(2). If A is upper triangular, or skewed towards upper triangularity, and q

* is selected to be

q [1 662 .*n-1 ] (27)

then for 5 sufficiently small, the above-diagonal elements have negligible

effects on the weighted kI norm of A. The advantage becomes especially

notable if the off diagonal terms of a triangular matrix are dominant.

In selecting the weighting vector q to minimize the weighted Z. norm

*(or 1 norm) of a matrix, the well established theory of nonnegative

* matrices [14], [15] can be used to great advantage. A matrix A is said to

be reducible if there exists some permutation matrix P such that

FAA

P'AP L1A 2 j(28)

0 A2

..~~~- . . . ..o

athries A 1 4 and ] A ae squre ub triest adfanoae such erutn matrix a

*exists, A is irreducible. A permutation matrix is a matrix wh~ose clerments . '

.................... . . * * . .. . . . . * * ** * * * * * * * * * * * . . .|
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are only one's and zero's, with exactly one 1 in each row and in each

column, and it has the property that P P'. The transformation described

in (28) is equivalent to successively interchanging pairs of rows and

corresponding pairs of columns. Physically, this is equivalent to .-

relabeling the input-output pairs of the loop transfer matrix

simultaneously. That means if x. is renamed x. then yi is also renamed yj ,

and so forth. Therefore, a system (assuming equal number of inputs and

outputs) with a reducible transfer matrix means that there exists a

subsystem (with an equal number of inputs and outputs) that does not

receive crossfeed information from the rest of the system. It is well

known, by a theorem attributed to Perron and Frobenius, that for an

irreducible nonnegative matrix IA there exists 1) a positive eigenvalue

X (called the Perron eigenvalue of A) which is no less than the modulus of

any other eigenvalue of A , 2) corresponding to ? there exists an

eigenvector of all positive components (called the Perron eigenvector of

A), and 3) X is the only eigenvalue of JA that has a corresponding

eigenvector of all positive components. Being a nonnegative matrix here

does not mean being a positive semidefinite matrix, but refers to each

matrix element being real and nonnegative. In the ensuing discussion,

positive vectors and matrices are similarly defined. By virtue of the

Perron-Frobenius theorem, if q is selected to be the Perron eigenvector of

A, then the weighted Z norm of A is found to be the spectral radius (the

maEnitude of the largest eigenvalue) of JAI. Although there is no guarantee

that x(IA!) will always be smaller than F(A), for most practical cases
where the crossfeed structure is unsymmetrical this is found to be true and

rt os t s m c s o o r

therefore a weighted 1 or Z norm may be used to reduce the conservatism

in tLe robustness tests. .- *
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Moreover, it is obvious from (25) that if IAI > JBI element for

element, then IIAIIQo. >, I1BIIQ . Thus, the weighted k, or Z norm can be used .'.'L-.'

to find robustness bounds for the modulus of the elements of the

perturbation matrix. This will be presented in the next section.

. If A is a reducible matrix, then there is no loss of generality in

*' considering A to be of the form of the right-hand side of (28) (or a

general upper or lower triangular block matrix), since this can be achieved

* by relabeling the input and output variables. 
Suppose now that All and A22 Oft, I

are both irreducible. Let and q2 be the Perron eigenvectors of A,, and

- A22 respectively. Then by substituting

-22

q col q 32 1 (29)

and the right-hand side of (28) for A into (25), the weighted k_ norm of A

is again found to be the spectral radius of JAI (for sufficiently small c),

which is the larger of the Perron eigenvalues of A or A22. If A or A22

* is reducible, the same procedure of finding the minimum weighted Z norm

can be imbedded. Thus, the off-diagonal block of a reducible matrix doeb

not affect the value of the minimum weighted ,, norm of the matrix. If the

perturbation matrix, E(s), and the return difference matrix, I + G(s) or

I + G (s), are both upper or lower block triangular matrices of identical

partitions then the off-diagonal block in E(s) does not affect the

stability robustness of the closed-loop system. This property will be

formally stated in the next section. The minimum weighted £ norm of a

" reducible matrix with nonnegligible off-diagonal blocks can be expected to

be smaller than its maximum singular value.
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.ftetpp If A is in block diagonal form with m blocks, then the weighting vector
-ft.

may be chosen as

q col q 52 Sm (30)

where q is the Perron eigenvector of the ith block. (The term Perron

eigenvector is slightly abused when the diagonal block is reducible.) The

minimum weighted .-onorm of A is again found to be the spectral radius of

JAI which is the maximum spectral radius of the diagonal blocks of AI"

ft.,- -

IV. Stability Robustness With Structured Uncertainty '.

In this section the main results are stated. For notational brevity,

let

A(s) I + G*(s) 1  (31)

Where G (a) refers to G(s) for the cases of Fig. 1 and Fig. 4, and to

"° G (s) for the cases of Fig. 2 and Fig. 3. The notation max ('] denotes the

maximum element of the nonnegative vector in the argument. An inequality of

nonnegative matrices compares its two sides element for element. In all

Lemmas and Theorems stated below, all the preliminary conditions on the

": nominal and perturbed systems are assumed satisfied, and all conditions

-F derived are assumed to hold for all s on the Nyquist contour.

Lemma 1. The perturbed systems of Fig. 1-4 are asympotically stable if

there exists a positive vector q(s) such that .'- 2.

3-41•
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-gmax (3Q %sJ~)I~~

x [) )(s) ,A(s) ,q(s)1max EQ ...

and in addition

max Q(s)IE(s)jq(s)] < 1 (33) L

for the case of Fig. 4, where Q(s) and q(s) are a frequency dependent

matrix and vector as in (22) and (21), respectively. This Lemma remains

true if E(s) and A(s) are replaced by E*(s) and A*(s), respectively.

Proof : Using weighted Z. norms in inequalities (5)-(7) with weighting

vector q gives the stated result of inequalities (32) and (33). If weighted

9 norms are used, E(s) and A(s) in this Lemma are replaced by E*(s) and

A* (s)"

Lemma 2 The perturbed systems of Figs. 1-4 are asymptotically stable if

G(s) is irreducible and

1 -

max [Q-(s)jE(s)j a(s)] < ------------- (34)
a jA(s)I "

and in addition

max [Na(5)lE(s)jka(s)] 1 (35)

for the case of Fig. 4, where J[EA(s) I is the Perron eigenvalue of A(s),

and a(s) is the corresponding Perron eigenvector. This Lemma remains true

if E(s) and A(s) are replaced by E*(s) and A*(s) respectively. *
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Proof Since G(s) is irreducible, A -() and A(s) are also irreducible and

[ JAW I and a(s) are both positive. Since qa(s) is the Perron

eigenvector of A(s),

max [Q -A(s)jq (s) I

- max IQa-((s)T((A(s)I)Sa(,) - X(jA(s)) (36)

Therefore, using Q a(s) and qa (S) in (32) and (33) gives the stated result.

If E*(s) and A*(s) are used in Lemma 1, then Lemma 2 is established with

E(s) and A(s) replaced by E*(s) and A*(s), respectively.

Theorem 1 The perturbed closed-loop systems of Figs. 1-4 are

asymptotically stable if either G(s) or E(s) is diagonal and

IjE(s) I ] <------------- (37)
![ IJA()I"

and in addition

EE(s)I] < 1 (38)
%.* %.- -.

for the case of Fig. 4.

Proof Suppose E(s) is diagonal. If G(s) is irreducible, then (37) and

(38) follow (34) and (35), respectively. If G(s) is reducible, then

relabeling the plant input and output variables (which is the same as

perforwing a permutation transformation), trsnsforms A(s) into the form of

the right-hand side of (28) while E(s) remains diagonal. Choosing qa(s) as

in (29) for inequalities (34) and (35) gives the stated result. The case
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where G(s) (and hence A(s)) is diagonal can be similarly proved by using

the Perron eigenvector of E(s) as g(s) in Lemma 1.

Note that for diagonal matrices, the Perron eigenvalue, the spectral

radius, and the maximum singular value are identical. Hence, for the

diagonally perturbed system (i.e., E(s) diagonal), (37) is a less

conservative test if the Perron eigenvalue of A(s) is smaller than the

spectral norm of A(s). This is true if G(s) is relatively skew, i.e., the

crossfeeding is unsymmetrical.

Theorem 2 The perturbed closed-loop systems of Figs. 1-4 are

asymptotically stable if E(s) and G(s) are both upper or lower triangular

and

max (9ma [leii (s ) JI ] <  ----- ---- ----- (39

1max a

and in addition -.:,

max .- -(0[ eii(s)JI < (40)

for the case of Fig. 4, where e. (s) and a..(s) denote the diagonal terms
12. 12.

of E(s) and A(s), respectively. The off-diagonal terms of E(s) (the

*crossfeed perturbation) do not affect the stability robustness of the

closed-loop system, and those of G(s) do not affect the robustness bound.

Proof : If G(s) is upper (lower) triangular, then so is A(s). If both E(s)

and G(s) are upper triangular, using q(s) of (27) in (32) and (33) gives

the stated result. If both E(s) and G(s) are lover triangular, then letting

,~*6 be sufficiently large in (27) gives the stated result.
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Theorem 2 offers a robustness criterion that is heavily structurally

dependent and is significantly less conservative than the singular value

tests when applicable. This will be demonstrated in an example in the next

section. This theorem can also be generlized to the case where E(s) and

G(s) are identically partitioned into upper or lower triangular block

matrices.

Corollary 2.1 The perturbed closed-loop systems of Figs. 1-4 are

asymptotically stable if E(s) and G(s) are both upper or lower triangular

block matrices with identical partitions, and if

max (s j < (41)

and in addition ... ]

ma IjEii(s)IIQ~ 1 (42)

for the case of Fig. 4, where E i(s) and A ii(s) are corresponding diagonal no 1

blocks of E(s) and A(s), respectively, and Qi is an arbitrary diagonal

weighting matrix with positive diagonal elements. The off-diagonal blocks I
of E(s) (the cross-feed perturbation between subsystems) do not affect the

stability robustness of the closed-loop system, and those of G(s) do not

affect the robustness bound. This corollary remains true if all weighted

Z norms are replaced by weighted kl norms.
00

Proof : If G(s) is upper (lower) block triangular, then so is A(s). If both

E(s) and G(s) are upper block triangular with N diagonal blocks, then " "".

substituting ,*

IL ."
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2 N-]
q col [q,' 6q2 - -3 - 61-INV] (43)

into (32) and (33) gives the stated result (for sufficiently small 6 ),

where Si is a vector composed of diagonal elements of Qi. If both E(s) andV " .:.

G(s) are lower triangular block matrices, then letting 6 be sufficiently J.

large in (43) gives the stated result. The proof for weighted 91 norms may

be analogously stated.

Theorem 2 gives robustness bounds on the magnitude of each diagonal

element of E(s) if E(s) and G(s) are both upper or lower triangular. The

°" off-diagonal elements may be left unbounded. Corollary 2.1 extends this

result to the case where E(s) and G(s) are both upper or lower block

triangular matrices, by measuring the weighted t0 norms of the diagonal

blocks instead of the magnitudes of the diagonal elements. The following

theorems specify bounds on the magnitude of each element of A(s).

Theorem 3 The perturbed closed-loop systems of Figs. 1-4 are

asymptotically stable if

b

1E 1 < -I----- A(s)I (44)

where

b (45)
ibl

.' for the systems of Figs. 1-3 and

b in { IA(s)l 1 (46)

3-46S.

..........-..... ....



NM '

for the system of Fig. 4.

Proof :Suppose G~s) is irreducible. Then A"1 (s) and A(s) are also

irreducible. Let q(s) be the Perron eigenvector A(s). Then by definition
-a

(47)~

IA Saf(s) IIs) qs)(7

Since an inequality of nonnegative matrices compares its two sides element

for element, inequality (44) leads to

max I G E s)1a B l < - -2-- - - - -max Qa B I 9 1

b b
- 2------- ma I ,jAWs)}Q (s)q (s)] -------------------- (48)

Comparing (48) with (34) shows that for the systems of Figs. 1-3, b 1,

b ut f or t he s ysatem o f F ig. 4, i t s u ff ic es t o s et b AI Asf i if

TIA~s)] I 1 and b I if TIA(s)jI 1. This proves the theorem f or

irreducible G(s).

If G(s) is reducible, so are A Cs) and A(s). There is no loss of

g.enerality to consider A(s) as an upper triangular block matrix. The Perron

eigenvector of A(s) is then given by (43) for arbitrarily small 6 , with q

chosen to be the Perron eigenvector of the ith block A1.j on the diagonal.

Then the proof of the irreducible C(s) case can be repeated to give the

stated result.

1K,*
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It is worth noting here that for the reducible G(s) case, Theorem 2 and

Corollary 2.1 give less conservative stability robustness criteria than 'V

Theorem 3, because the validity of (44)-(46) implies the validity of

(39)-(42). Moreover, Theorem 2 or Corollary 2.1 permits the off-diagonal

elements or off-diagonal blocks, respectively, of E(s) to be unrestricted '

in magnitude, but Theorem 3 imposes bounds on the magnitude of all elements

• Nevertheless, Theorem 3 provides a way to structure E(s) when G(s)

is irreducible, which cannot be covered by Theorem 2 and Corollary 2.1.

The following theorems specify, in different ways, uniform bounds for

all elements of the perturbation matrix E(s).

Lemma 3 The perturbed systems of Figs. 1-4 are asymptotically stable if

there exists a positive vector q(s) such that

max.Imi {qi(s)}
,.j, l eij(s)l < -- - - (49) : ::::.

"- d'q(s)max [Q- 1 (s)jA(s)jq(s)"

and, in addition, for the system of Fig. 4

min {qi(s)} .o)

d'q(s)

where e. (s) is the ij element of the perturbation matrix E(s), and d is
ii

the vector defined by

d - col 1 1 . . . (51) ..

This Lemma remains true if A(s) is replaced by A*(s).

Proof Let U be the n x n matrix of which all elcLnts are unity, i.e.,
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U- L ...l(52)

it is obvious that for a nonnegative matri E1s

tE(s)l 4 () a (53)

j I
and for any nonnegative vector s)

*max IQ7 (s)jE(s)jq~s)J -% max (Q (s) (1 1 e.i a U()

l .e. .(a) _r~s

- - - - - - - - - ------ --- (4

Substituting (54) into (49) yields (32), and substituting (54) into (50)

yields (33). To prove the validity of this Lemma with A(s) replaced by

A*(s), simply use E*(s) and A*(s) in Lemma 1 and repeat the above argument

with E(s) replaced by E*(s) in (53) and (54).

Theorem 4 The perturbed systems of Figs. 1-4 are asymptotically stable if

G(s) is irreducible and

max 1 ai

and, in addition, for the system of Fig. 4,



.. mi a (6
max 1e (s)I <~ ~ ~ ) C6 .

1 2,j i d'qa (a)
MMr_

where d is given by (51), q (s) is the Perron eigenvector of A(s), and
-a

q .(s) is the ith element of q (a). This Theorem also remains valid if

q (s) is chosen as the Perron eigenvector of A*(s) instead.
-a

Proof :Since G(s) is irreducible, the Perron eigenvector q (s) of A(s)
-1a

exists. Hence, Q (a) exists. Substituting q (s) for q~s), Q_ (s) for Q(s),

Iand q ai(s) for qi(s) in Lemma 3 yields Theorem 4.

*Theorem 5 The perturbed closed-loop systems of Figs. 1-4 are

p asymptotically stable if either

max < - -- - -- - - -- - -- - -- ( 7
n-max row sun of IA(s)I

or

max e s) < - - - - - - - - - - - - - -(58)

i.j i n-max col sum of jA(s)f

and, in addition) for the system of Fig. 4,

max (9

Proof Substituting d for q(s) and the identity matrix I for Q(s) in (49)

and (50) yields (57) and (59), respectively. If A*(s) is used in (49)

instead of A(s), then (58) and (59) follow.

Both Theorems 4 and 5 indicate that the bound on the magnitude of the

elements of E~s) is inversely proportional to the number of variables of
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the multi-input multi-output system. This may be attributed to the fact

that crossfeed perturbations of maximum magnitude are assumed for all

elements in the perturbation matrix E(s). If this assumption is not

imposed, a less conservative criterion will result, as given in the next

Theorem.

Theorem 6 The perturbed closed-loop system of Figs. 1-4 are

*'2 asymptotically stable if .. ,

max row sum of lE(s)I < ------------------------- (60)
max row sum of jA(s)I

and, in addition, for the system of Fig. 4,

max row sum of IE(s)j < 1 (61)

The Theorem remains valid if the operator "max row sum" is replaced by "max
.: *.' .....

col sum". "..".

Proof : Substituting d for q(s) and I for Q(s) in (32) and (33) gives (60)

and (61). If E*(s) and A*(s) are used in Lemma 1, then "max col sum"

replaces "max row sum" in (60) and (61).

It should be noted that (57) implies (60), and (59) implies (61).

Therefore, Theorem 6 is a less conservative test than Theorem 5. However,

more information about the structure of E(s) is needed to apply Theorem 6

than Theorem 5. Usually the A(s) matrix is completely known and there is no

difficulty in obtaining the right-hand side of (57) and (5B). However, it

is possible to tighten (make it more conscrvative) the conditions (57) and

(58) further so as to require tess information about A(s) and make an even

sinmplcr test, as given in the net Theorem.
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ATheorem 7 The perturbed closed-loop systems of Figs. 1-4 are

asymptotically stable if ..

max .*. 4

jei(s)j < -- ------- (62)
i~j l i ax -

and in addition, for system of Fig. 4,

max e, (a <
j j

where a. (s) is the ij element of A(s).3i

Proof

max row sum of IA(s)I n a a()I (64)

Therefore, (62) implies (57). This establishes Theorem 7.

Alternatively, Theorem 7 can also be proved by using the absolute

matrix norm in inequalities W5-07). The absolute matrix norm is defined by

[161 *=J

IAli n -' m a j (65)

which is consistent with, but not subordinate to, the absolute vector norm

max
labs n i Iil(6).
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V. Illustrative Examples

Examples are used to demonstrate some of the abilities of the above

theorems in exploiting the structural information of the plant

uncertainties to determine the stability robustness of the feedback system.

For the sake of comparison, the system used in the examples is taken from

* Lehtomaki, et al [21,[17I-[18I.

I +I()bCs

C2s

L - I

nominal loop transfer function G3(s)

perturbed loop transfer function G3(s) -

irFIG. 5 FEEIBACK SYSTEM OF EXAMPLE 1

Consider the feedback system of Fig. 5 where the uncertainties in the

open-loop transfer function are modeled as multiplicative perturbations.

The thieory developed in tile above section can answer questions such as:



1) Suppose that the uncertainties of the open-loop transfer function

lie only in the complex gains of the crossfeed and feedforward paths of the

plant model, and there is no uncertainty about the existence or

" nonexistence of the signal paths. What are the sizes of the perturbations

that the nominal closed-loop system can tolerate without becoming unstable?

2) If the only uncertainty in the model of the nominal transfer matrix

is in the magnitude of the d.c. crossfeed gain b12 , what pertentage change

in this gain can be tolerated before the closed-loop system becomes

unstable?

3) Suppose that there are uncertainties in the existence or

nonexistence of signal paths as well as the complex gains in the paths.

What are the sizes of the perturbations that the nominal closed-loop system

can tolerate without becoming unstable?

4) If the only uncertainty in the model of the nominal transfer matrix

is the possible crossfeeding of signals from u1 to u2 , which is not

* included in the model, what is the magnitude of the complex gain in this *

path, regardless of its phase, that the closed-loop system can tolerate

without becoming unstable?

5) If the possible crossfeeding of signals from u1 to u2 , as well as

from u2 to u, are the only uncertainties in the open-loop transfer

function, what are the sizes of these crossfeed gains that the system can

tolerate without becoming unstable?

6) If there are uncertainties only about some of the complex amplifier

gains at the control variable inputs u and u2 (the so-called diagonal

perturbation), what percentage changes in these gains can be tolerated

before the system becomes unstable?

The nominal open-loop transfer matrix is given by
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G(s) s1 51(67)Vr
0

Therefore,

I b12 (6+l)
12

-l -l s+2 (s+2)
A(s) [I1+ G71Cs)) - (68)

s+2

and

a (aS) 1(69)
s+2

The assumption made in question 1) means that the perturbed open-loop

transfer matrixZ''(s) must have the same crossfeed and feedforward structure

as the nominal open-loop transfer matrix. This in turn means that the

perturbation matrix E(s) must also be upper triangular. By virtue of

* Theoremi 2 and (69), E~s) only has to satisfy

mxli(s)!] < 18+2 (70

or, since the off-diagonal terms of E(s) and A(s) do not play a role in the

robustness measure in this case,k

V" (,I 112(81 8+21
jcEps)j <e2 ~ (71)

. . 4, ( S s 2

1 ('21 1 le2

Y *~* %*~ N . % *.. . ., . ,.



'4.1 . .- "

Inequality (71) is the answer to question 1), provided the perturbed system

satisfies the preliminary conditions of stability robustness stated in

section II.

Under the conditions set in question 2), the perturbation matrix, E(s),

is given by

E(s) ,, 12 (72)
-- '0 0

Then

1 kb1

s+l s+l :::

G(s) G(s)[I + E(s)] = (73)

0 ' _ -

6+1

which means that the only perturbation in G(s) is the magnitude of b12' In

view of (71) and (72), it is seen that the closed-loop system can tolerate

- any perturbation in the real gain b12 without becoming unstable.

The concern raised in question 3) suggests that there may be a signal

" path going from u2 to u1 (Fig.5) that has been neglected in the nominal '.

model G(s), and complex gains in all four signal paths are subject to

perturbation. In this case, e21 (s) of E(s) is no longer restricted to zero

and Theorem 5 may be used if bounds on the elements of E(s) are to be

found. Substituting A(s) of (68) into (57) or (58) gives
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ax1/2 lw

i'j I J 1 b 1 s2 l (74)

- + 12
a+2 (s+2)

N One can also let

b12(s4.)1)1/2

q1  2
(s+2)

and

11/2
2 (76)

s+2

in Lemma 3 and obtain

max je.(a)f < - - - - - - - - - - - -- - - - - - -I( 7
ij I +j b12 (6+1) b.2+1

-s+2 I -(s+2) s2

which is a less conservative criterion than (74).

The concern raised in question 4) suggests that the perturbation matrix

E(s) takes the form I
E(s) =(78)

Then

1-5



* -. + -. 1

%% j

a(s) G(s)[I + E(s)] =(79) %%

e(B) Ie21

s+l s+l ..

5)TA

* which shows that a crossfeed from to c1 through u2 exists in the

". perturbed model. Application of Theorem 6 yields

21 (80)
S1 b1 2(s+1)

6+2 (s+2)2

Alternatively, one can let q, I and q2-- w in (32) and apply Lemma I to

yield

e ,e2 (s) < -- - - - - - - -(81) . .

(81b1 2 (s+l)

(s+2)2

Hence, the magnitude of the perturbation in the crossfeed path that is

unmodeled shall be limited to the inverse of the magnitude of the gain in

the "opposite" or "on-coming" path in the closed-loop system. This shows

the seriousness of neglecting a signal path that is in the opposite

direction of a high gain crossfeed path.

It is noted that the singular value method cannot be used to find

answers to questions 1) and 3), and it fails to distinguish the structural ,..

*! difference between the perturbation matrices that represent the assumptions

set in questions 2) and 4). (See Corollary 2.2 of [21.) More specifically,

regardless of whether E(s) takes the form of (78) or the form
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0 e 1 2 (s) * .

E~s) (82)
0 0

the singular value method yields a small crossfeed tolerance given by 12]

max { e1 2 (8 1e2 (sij < a[I + G(s)] (83)

12 21

and thus gives a misleading answer to question 2). Fig. 6 shows the graphs

of the right-hand Bide of inequalities (80), (81), and (83) (designated by -

'p Y., and y3, respectively) on the same scale, for b 12  1

60

50

40

30

2 - j

10

0.001 0.10 0.1 1 10 100 1000%

FREQUENCY
Fig. 6 Robustness bounds on the unmodeled crossfeed gain when b1  1

12i

It is interesting to note that the bounds obtained by the optimally ..-

weighted £k. norm method are significantly greater (less conservative) than

the ones obtained by the singular value method at all frequencies. The



unweighted £. norm bounds (y1 curve of Fig. 6) are only slightly lower than

the singular value bounds at low frequencies but are exponentially higher %

at frequencies higher than 1 rad/sec. When b12 . 0, the robustness bounds

are infinity (as indicated by the left-hand side of (81)), but the singular

value method fails to reveal this. In fact, the singular value method would "

give a conservative bound of Is+ll When the crossfeed gain b1--
js~iI12

large, the off-diagonal element in A(s) is dominant at low frequencies and

the difference between the and Y3  curves diminishes, but as the

frequency increases Y2 becomes significantly greater than Y3. Fig. 7 shows

the graphs of y2 andy 3 in dB versus frequency, for b12 = 50.

25

5- .215

5 
.°.o

-5

-25
0.001 0.01 0.1 1 10 100 1000

FREQUENCY

Fig. 7 Robustness bounds on the unmodeled crossfeed gain when b1  50

The curve y1  is only a small fraction of a dB below y2 throughout the

entire frequency range and is omitted in Fig. 7 to maintain clarity.

The assumption set in question 5) implies the perturbation matrix
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10 e(a)]

E(s) -I12 (84) 7
le(s) 021i

Note that this case is not covered by Corollary 2.2 of [2], in which

I + E(s) must be a block triangular matrix. Application of Theorem 6 to 7

this case yields an upper bound given by the right-hand side of (80) for :

both I e1 2 (S)I and I1e21(s)l However, a less conservative bound can be found

* (see Appendix) by selecting

ql(s) je1 (s)
S= (85)

for the q(s) vector in (32), and then applying Lemma 1. This gives the

upper bound of the greater of 1e2(S)I or 1e2 (S)l as

2
max( 1)

max e 1 ei(S)l le e21(S)l <---------------------------------(86)
1 bb (8+1)

s+2 (s+2) --
This selection of q(s) vector is optimal in the sense that the bounds on

and e2 lare maximized. Note that the ratio of je12 (S)ft

1e2 Cs)l is given by

Finally, the conditions set in question 6) mean that the perturbation

* matrix E(s) is diagonal, i.e.,

E(S) =(87)

Leluis) 22(j

r7- The robustness bound on the magnitudes ofandl s)2and is readily

found by application of Theorem 1. The result is the same as the answer to
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.4.: question 1) (inequality (70)) since a diagonal E(s) is a special case of an

upper or lover triangular matrix. The result is clearly less conservative

than that of the singular value method since b12 contributes significantly

to the singular value of A(s) but not to the Perron eigenvalue of A(s).

The physical meaning of the reducibility of the open-loop transfer

matrix G(s) can also be demonstrated through the above system (Fig.5). It '"

is seen that if G(s) is reducible, A(s) and A- (a) are also reducible to

block triangular matrices that are partitioned identically to G(s). Hence

the system can be said to be reducible. The reducibility of the system of

Fig. 5 is characterized by the lack of crossfeed from u
1 

or c1 to u2 or c2.

This constitutes the zero element )elov the diagonal in the G(s) matrix of

(67).

For control systems having a large number of inputs and outputs, the

reducibility of the system can be similarly determined. Physically, this

amounts to finding a subsystem (or subsystems) which does not receive

crossfeeds from the signals of the rest of the systems. If such a subsystem

exists (the determination of such subsystems may be facilitated by graph

theory), the GC(s) matrix is reducible. For example, if G(s) takes the form

of the right-hand side of (28) after the input and output variables are

relabeled, then the subsystem characterized by A22 does not receive any

crossfeed from the subsystem characterized by A11 . If Al1 or A 22 is again . .

reducible, then G(s) can be further partitioned into an upper triangular ' '-

block matrix having more than two diagonal blocks, after the input and

output variables are appropriately relabeled. Note that a subsystem must

have an equal number of inputs and outputs. Fictitious grounded (zero

signal level) inputs or outputs can always be augmented to the system to
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make the number of inputs and outputs virtually equal. Hence, if a system.

is reducible, Corollary 2.1 may be applied to characterize allowable

perturbations of a similar structure. If the G(s) matrix is reducible to

triangular form, Theorem 2 is applicable. If the system is irreducible, %

Lemma 2 and Theorem 4 may be applied. The rest of the Lemmas and Theorems"''"

apply to both reducible and irreducible systems.

VI. Conclusions

I]
Techniques for using weighted £ and k. norms to incorporate the

structural information of a multivariable feedback control system in the

measure of its stability robustness have been presented. The flexibility

offered by these norms, along with the use of the theory of nonnegative

matrices, enables one to assess individual bounds on elements of the

open-loop perturbation matrix for stability robustness, under various

assumptions on the structure of the plant uncertainty. Situations in which

certain crossfeed perturbations in a given system may be unbounded without

destabilizing the closed-loop system can be easily determined. Whether or

not failure to include certain crossfeed signal paths in the system model

can lead to serious mriscalculations of the system stability can also be

determined. Structure-dependent stability robustness criteria are derived

via weighted k. and k £ norms. When the structure of plant uncertainty is

known, these new criteria may be used to obtain less conservative

uncertainty bounds than the singular-value based robustness tests.
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APPENDIX

Derivation of Robustness Bounds for the Crossfeed
Perturbations for the Illustrative Example S.~

I Let

a bAsI (A-1)

and E(s) be the one given in (84). Let

e 12 (s) 1 2-)?6I ~~ (A-2

and

ql(s)
X (A-3)

Substituting these quantities into (32) gives the sufficient condition for

robustness as

I--- le (s)~ A
121

xx

w here a and b are positive. In view of (A-2), for x < 3it is seen that

I (A-5)
---J2(s) > xe 21 (s)I

* ~Hence, for all x * ,(A-4) may be restated as .

3-6



12 1

a8+--- b

which in turn gives 
...

12 ( ) < - - -- - - -- - - (A-7) M

-1-f + -1 b)~
x x J

Combining (A-2) and (A-7) gives

a/ 2

Je2 (s) < --- (A-8)

-1 (a +--b)

Hence, it is desirable to have x as large as possible to give the least

*conservative bounds on the right-hand side of (A-7) and (A-B). Therefore,

let x a in (A-7) and (A-B). This gives

I2
22 - . ,

a+ b

and

211
1e21()I < + b(A0

* For x >, the inequality of (A-5) is reversed. Hence (A-4) iwplies

21(8)1
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4o or

e e1.(s) I A-2
-~ xa + b

Combining (A-2) and (A-12) give

2

1e 1 2 s)I< --- (A-13)
12 xa + b

Hence, x should be selected to be as small as possible to give the least

conservative robustness bounds. Therefore, in (A-12) and (A-13), x should

again be set equal to ,again yielding (A-10) and (A-9), respectively.

Now (A-9) and (A-10) can be combined to read

max 2

maxe { e~sI,1 (s)I < (A-14)
I"' fa + b

Substituting appropriate numbers for a and b in (A-14) yields (86).
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NONCONSERVATIVE EVALUATION OF UNIFORM

STABILITY MARGINS OF MULTIVARIABLE FEEDBACK SYSTEMS ."

Hsi-Han Yeh*, Capt D. Brett Ridgely+, and Siva S. Banda+
Flight Dynamics Laboratory AFWAL/FIGC

Wright-Patterson Air Force Base OH 45433

Abstract

This paper discusses concepts of stability margins of multivariable

feedback systems. Independent and uniform stability margins are defined. A

previous conjecture that the uniform margins may be computed by using the

eigenvalue magnitudes instead of the singular values in the robust

stability criteria is theorized. The nonconservatism provided by this

theory in the evaluation of uniform margins is discussed, along with

limitations of the uniform margins. Also presented is a method of using the

uniform margins to extend the region of stability beyond what can be

specified by singular values. Results are demonstrated numerically in an

example of a lateral attitude control system for a drone aircraft.

Introduction

Gain and phase margins have long been accepted as useful concepts in

the specification of single-input single-output (SISO) feedback systems,

because they give the user of a control system a feel of how safe the

system is, so far as the stability is concerned. In extending these useful

concepts to multiple-input multiple-output (MIMO) feedback systems,

* On leave from the University of Kentucky under AFOSR resident research

program, 1982-1984 R -

+ Aerospace Engineer, Member AIAA
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diversity and ambiguity often arise. The one-loop-at-a-time stability

margins fail to account for the simultaneous variations in a MIMO feedback

system and hence may be unacceptable as relative stability measures The

norm-bounded robustness criteria1'2 guarantee closed-loop stability, but

give the user no idea as to how the individual elements of the gain matrix

may vary without destabilizing the closed-loop system. It is possible to

obtain bounds on the magnitude of each element in the perturbation matrix

*"- of the loop transfer function for the stable operation of the feedback

system3'4  In a general sense, these bounds arc gain margins of the MIMO

system. However, they are derived under the assumption that the phases and

magnitudes of all elements in the perturbation matrix may vary

simultaneously in the worst possible direction with unlimited phase

variations. This is equivalent to having all the direct and crossfeed

transfer functions varied independently and simultaneously. Since the worst

possible variations are a mathematical extreme, these general gain margins

il are unduly conservative and, due to their uncorrelated multivariate nature,

do not give a clear notion of how far the feedback system is from becoming

unstable.

More meaningful stability margins may be defined' as limits within

which the gains of all feedback loops may vary independently at the same

time without destabilizing the system, while the phase angles remain at

their nominal values, and vice versa. This amounts to setting the limits

for independent gain or phase variations in a diagonal perturbation matrix

for a multiplicative perturbation model. The zero off-diagonal elements in

- the perturbation matrix coordinate the variations of the crossfeed transfer

functions and render the perturbation more tractable. However, these '" "

stability margins, as computed via the singular-value based robust

3-71
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stability criterion also tend to be very conservative. In an attempt to
,.. .".

relax the conservatism in the evaluation of stability margins of a

two-input two-output lateral attitude control system of a drone aircraft,

5
Mukhopadhyay and Newsom experimented with using the magnitudes of the

eigenvalues instead of the singular values in the robustness criterion. By

examining the Nyquist plot of the eigenvalues of the return difference ____

matrix of the control system in their study, they conjectured that the

"eigenvalue-based" gain (or phase) margins are limits within which the

gains (or phases) of all feedback loops vary uniformly without

destabilizing the feedback system while the phase angles (or gains) remain

at their nominal values. In fact, since the spectral radius (maximum of the

modulii of the eigenvalues) of a matrix is the greatest lower bound of all

norms of that matrix, the conjecture of Ref. 5 is the least conservative

for the evaluation of the uniform stability margins by means of -

norm-bounded robust stability criteria.

The uniform variations of multiloop gains and phases are also -

interesting in that the uniformity constraints give the multiloop

variations a single-variable nature. Hence, the regions of stability in the

gain and phase spaces degenerate into line segments. At each stable nominal

operating point in the gain and phase spaces one such line segment may be

constructed. In this fashion, the uniform gain and phase margins facilitate

a nonconservative but discrete representation of the regions of stability

in multidimensional gain and phase spaces. .".-"

In this paper, the conjecture given in Ref. 5 is proved. Uniformity in
.

the gain and phase variations in feedback loops may be viewed as a special

structure in the perturbation of an open-loop transfer matrix. Therefore,
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weighted 1 and £o norms3 are used in the norm-bounded stability

robustness criteria to derive the formulas from which the uniform stability

margins are computed. The concept and the one-dimensional characteristics

of the uniform stability margins and their use in discretizing the regions Ri.

of stability in multidimensional gain and phase spaces are demonstrated.

The two-input two-output lateral attitude control system of a drone

5
aircraft is used again to demonstrate the extent of reduction of

"' conservatism in determining the regions of stability and to demonstrate the

feasibility of discretizing the regions of stability in multidimensional

gain and phase spaces into line segments characterized by the uniform l

variation of loop gains and phases. The statement and proof of the

5 6conjecture are preceded by definitions of the commonly used 5 ' independent

gain and phase margins and the proposed uniform gain and phase margins.

Stability Margin of Multivariable Feedback Systems

Definition 1: Independent gain margins are limits within which the

gains of all feedback loops may vary independently at the same time without

destabilizing the system, while the phase angles remain at their nominal

values. Independent phase margins are limits within which the phase angles

of all feedback loops may vary independently at the same time without

destabilizing the system, while the gains remain at their nominal values.

o The independent gain and phase margins vary with the point at which the

complex loop gains are measu'red. For a general nonunity feedback system as

shown in Fig. 1, if the loop is broken at u to measure the complex loop

gains, then the simultaneous perturbation in each loop may be represented

by a diagonal perturbation matrix L(s) preceding the plant G(s). If the

............ ........... .- -_



loop is to be broken at the output y, then L(s) should be inserted before

the feedback block H(s). For s = jw, let L(s) be .

ja1 (W0) j02 (W0) j5 (Ci)

L(jO0) diag .C()e 2( )e , . . Un(O)e 1 (1)

r U

H (s)--

Fig. I Feedback system with input-multiplicative perturbations

Independent gain margins are limits within which .(cw) may, vary

independently for each i without destabilizing the system, while O.(:j) = 0

for all 6) and all i. Independent phase margins are limits within

which 8.((j) may vary independently for each i without destabilizing the -

system, while 0.(W) I for all ci and all i. .-

One can also let both g.(i) and 0.(c) vary simultaneously and

independently for each i. But then the limits within which M,(i) may vary

depend upon 0.(M) and vice versa, and hence are unwieldy for use as gain

11

and phase margins. .',•

Definition 2: Uniform gain margins are limits within which the gains

of all feedback loops may vary uniformly at the same time without -

3-74 • 4...
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Sdestabilizing the system, while the phase angles remain at their nominal

values. Uniform phase margins are limits within which the phase angles of

all feedback loops may vary uniformly at the same time without

destabilizing the system, while the gains remain at their nominal values.

For the system of Fig. 1, let L(jO) be given by

L(jW) = )Je(4 K(jo0) (2)

where K(j) is the nominal complex loop gain matrix given by

K(jw) = diag[ k (j() k2 (jw). kn(jw) 1 (3)

Uniform gain margins with respect to the nominal loop gain K(j() are limits

within which (wC) may vary without destabilizing the feedback system

while 0(6ji) 0 for all W0 Uniform phase margins with respect to the

nominal loop gain K(j(O) are limits within which 0 (jW0) may vary without

destabilizing the feedback system while P(() = 1 for all . -*

* -'.-'

The nominal gain K(jw) also represents a nominal operating point in the

gain and phase spaces, about which the system is uniformly perturbed. Since '-

there is only one complex variable in (2), the regions of stability about

each stable nominal operating point K(Jw) in the gain and phase spaces are

straight-line segments. These one-dimensional regions facilitate a discrete

representation of the regicns of stability in multidimensional spaces. This

will be demonstrated in an example after the formulas for nonconservative

evaluation of the uniform stability margins are derived.
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Nonconservative Evaluation of Uniform Stability Margins '

For the system of Fig. 1, two robust stability criteria can be

written; i.e., for all s on the Nyquist contour,

aV'

. LLs) 1] < ![I + {H(s)G~s)} 1 (4)

and

"'L-(s) - I] < S I[I + H(s)G(s)] (5)

where at< 1, '(.) is the maximum singular value of the matrix in the

argument, £_() the minimum singular value, and I the identity matrix.

Since these criteria are derived1 '2 on the basis of multivariable Nyquist

theory, some preliminary conditions on the nominal and perturbed systems

1 ,6
° must hold. These conditions are (a) the open-loop characteristic

polynomials of the nominal system and the perturbed system must have the

same number of closed right-half plane roots, (b) all imaginary poles of

" :the open-loop perturbed system must also be poles of the open-loop nominal

*- system, and (c) the nominal system must be closed-loop stable. Since the

right-hand sides of (4) and (5) are measures of the nearness of
r-l

{H(s)G(s)} and H(s)G(s) to the critical point of stability, (4) and (5)

' may be referred to as the inverse Nyquist formulation and the Nyquist

formulation, respectively.

If these formulations are employed to determine the stability margins,

the results obtained are always conservative. However, these criteria are

3,6,7
special cases of inequalities involving general matrix norms namely,
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IJL (S - -- (6)

I I I 1[I + {H(S)G(s)}- 1-1j1

and• .

L-l(S) - I < - - - - - - (7)
1111 + u(s)c(s)F'II

where CL~ < 1 and the vertical double bars denote general matrix norms

which include the maximum singular value as a special case. Inequality (6)

follows from a simple generalization of the derivation given in Ref. 2, and

4,7has been used in other papers'. Inequality (7) can be derived in the same

fashion as the derivation of inequality (5) (see Ref. 1). Nevertheless,

because the error matrix L (s)-I appears nonlinearly in the convex

combination of nominal and perturbed loop transfer matrices, the

generalization of the proof in Ref. 1 to the proof of inequality (7) is not

8trivial. The proof of (7) can be found in a recent paper . It is evident

that the conservatism of robust stability criteria may be reduced by using

(6) or (7) instead of (4) or (5), respectively. This reduction will occur

if for all s on the Nyquist contour the norms of L(s)-I and

[I + {H(s)G(s)}-I]-  or L (s) - I and [I+H(s)G(s)]-  can be computed to

be less than their respective maximum singular values (note that

5
The conjecture of Mukhopadhyay and Newsom states that, if L(s) is

characterized by (2) and if K(ju)) = I, the maximum and minimum singular

values in (5) may be replaced by the maximum and minimum magnitudes of the

eigenvalues, respectively. More specifically, the conjecture states that

under the above assumption, the stability of the system of Fig. 1, and

hence the stability margins for K(jW )=I, may be determined by the

inequality
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XIL (s) 1 Tu < a < I 11tI + H(s)G(s)lj (8)

for O.. 1, and for all s on the Nyquist contour, where denotes the

ith eigenvalue of the matrix in the argument. Since any norm of a matrix is

always greater than or equal to the spectral radius of the matrix,

inequality (8) is the least conservative of all computations of (7), which

includes (5) as a special case.

The subsequent development theorizes the above conjecture in a general

framework and provides a proof, and then derives the nonconservative

formulas of uniform stability margins. The same conjecture can also be

applied to (4), ai.d will also be proved here. In the formulation of uniform

variations of complex multiloop gains, the nominal gain matrix K(jW) of (2)

is not an identity matrix in general and is given a priori. It may be

treated as part of the plant. Therefore, the resulting norm-bounded robust

stability criteria for the system of Fig. 1 with L(s) characterized by (2)

may be written as

< ~~~ ~ ~~ .-------------- (9)

I I[I + {H(jw)G(jw)K(ji)} 1 1_II 1 1">

.. e W - 1] I < ------------------------------- 0
II ( Qk0) III + H(j )G(jw)K(j)]-i

for 0 < W < These inequalities are obtained by substituting jd for s,

G(jw)K(jw) for G(jw), and (w)exp[j0(W)] for L(jw) in (6) and (7).

Practical systems with H(s)G(s)K(s) - 0 as s -> are assumed.
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'Lemma 1 Let A be an n x n matrix, AI be the nonnegative matrix

formed by taking the absolute values of the elements of A, and

Q diag[ql q2 . . . q n be an n x n diagonal matrix with q, > 0, for

i= 2 - n. The maximum row sum of the matrix product Q-'IA Q is a norm I

of A, called the Q-weighted £ norm, denoted by .w.

The~ma IAofLarowisum of Q'JIA1Q (

The proof of Lemma 1 may be found in Ref. 9.

Leuira 2. Given any nonsingular n x n matrix M, and any n x n matrix A,

W if f(A) is a norm of A, then f(M-IAM) is also a norm of A.

This Lemma is also given in Ref. 9.

Theorem 1. If the preliminary conditions following (4) and (5) hold,

and L(s) is characterized by (2) (K(jw) need not be diagonal), then the

system of Fig. 1 is stable if either one of the following inequalities is

satisfied:

I(ci) eje( ) - m n X.[I + {H(jco)G(jw)K(jw)}-lI (12)

1je(w) < minj I + W)(j]0G(j~i)K(jQ0)I (13)

for cx.\< 1, and for all 0 u l <'

Proof: Let M(s) be the modal matrix of [I + {H(jw)G(jw)K(j)}-]- •1.

Then I (jW)[I+{H(j,)G(jw)K(j)}-I]- M(jui) is in Jordan canonical form, and
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all of its elements below the diagonal are zero. For notational brevity,%

let this Jordan canonical form be denoted by J~jwj), i.e.,

JHw M Cjw)[I+{H(jw)G(jcw)K(jW)_ I- M(jw) (4

Let

2 n-l (5
Q ~diag[1 CE: (15)

where C is an arbitrarily small positive number. Then, by virtue of Lemmas

1 and 2, a special form of (9) may be written as

I1M QM.w)[SW~eJ - IMQjW)lQOO< ------- (16)

The left-hand side of the above inequality is readily computed to

be 0( We ~ I() -l With the aid of (11), (14), and (15), the

Q-weighted Z., no rm of the Jordan canonical form of J(j&)) is found to be

J~jw Q 0 m x.[(I + {H(jw)G(jw)K(jw1D} ) II + (17

The variable 6in (17) is either 1 or 0, depending on the superdiagonal

elements in JQjW). Thus, (16) is equivalent to

-1---------------------------------------------------(8
~(ci~ej6w) ll~XjXA(l + {H(jw)G(jwi)K(ic4) 1] + 6C

However, for any invertible A, any eigenvalue of the inverse of A is the

inverse of an eigenvalue of A. Therefore, (18) is equivalent to
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- i~ < q A X[i + (y3)(j)~(jcj -0()2)
jo~ w) 1 . -----

where~~~~~ -()vnseswt -- nsuhawytat0- ()( E frsm

------ ------ - (19

- -11m~n+ 6AI +ny +H jH)G&j)KGjjW)}If . a) (21

whr 0(c) vaise wit if 2n auc (23)ha c <k frsm

00

in (a /2 ( jw)Gjw~jw) a n ( 2)i (24)
0 0 0

Proof Ihniewof (21) magnd (12) the MM system of Fig. 1 ise staben if

a 0 11 ) a (25)

and te unform hasemarg 3- ar

Tr- W)~- I f 2<a(3

-2sin .(a 1 ) < (. s -( 2 f a 2(4



%. W

Letting O(() = 0 in (25) gives (22). To obtain the uniform phase margins,

let g(&) 1 in (25) to yield

e 1 < a (26)

Conditions (23) and (24) are a result of (26). Q.E.D.

Corollary 1.2. If there exists some ct 1 1 such that --

for 0 O < ,

m. %i[I + H(j)G(j)K(ji)] >/ a °  (27)

then the uniform gain and phase margins of the MIMO system of Fig. I are

given by

" "1 1 . - -"
----- -(--) < (28)

1 + c Yo 1 - O

and

-2sin (co/2) < 8(c) < 2sin (ac/2) (29)

respectively.

Proof: Letting D(ct ) 0 and a = ao in (13) yields formula (28) for the

uniform gain margins. Letting (w) 1 and a = aco in (13) yields formula

(29) for the uniform phase margins. Q.E.D.
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Theorem 1 and the Corollaries may be restated for independent gain and OIL

phase margins by substituting singular values for eigenvalues, B .or

6(w0), and 0.(w ) for O(w), because the maximum singular value of a

diagonal matrix is the magnitude of its largest element. However, in many

cases less conservative results can be achieved by using norm measures

other than singular values. For the sake of convenience, Corollaries 1.1

and 1.2 may be referred to as the inverse Nyquist formulation and the

Nyquist formulation of uniform stability margins, respectively. Note that

the inversion of the loop transfer function matrix in the inverse Nyquist

formulation may be avoided by substituting [lI+H(s)G(s)]I H(s)G(s) for

* [I+{H(s)G(s)}-I in the right-hand side of (6) and then rewriting (12),

(21), and (27) accordingly. ."

Since multivariable stability margins are based on sufficient

conditions, the union of the stability regions given by different methods

is also a valid region of stability. When computing uniform stability

margins, the nominal system (when L(s) K(s) ) is required to be stable in

order for the robust stability criteria to be valid. The selection of the

nominal gain K(s) may be aided by the formulas for independent gain

-margins. Thus, the combined use of independent and uniform stability

margins enables one to extend beyond the conservative regions of stability

established by the independent gain and phase margins along selected

straight lines in the gain and phase spaces. This is demonstrated in the
kW

example in the next section.
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* Regions of Stability in the Gain and Phase Spaces

As in the SISO case, stability margins of a MIMO system guarantee the

stability when either the gains or phases, but not both, of all the

feedback loops may vary within the prescribed limits without destabilizing

the closed-loop system. Therefore, if the uniform gain margin of a MIMO

system at a nominal gain K(jw) is [gml' gm2] then the system (Fig. 1) is

stable when

L(jW) = oK(jW) (30)
0

for all o satisfying gm < o < g 2 " To determine the region of stability
0 ml 0 2

in the gain space where phase angles of all feedback loops are assumed

unperturbed, all elements in K(jW) are selected to be real constants, i.e.,

K(jw) - diag[k I k2  . kI (31)
1 2.

The coordinates of the gain space are loop gains (magnitudes of the

elements of L(j0) given by (30) and (31)) gi where i =  k., for

i = 1,2, --. ,n. Thus, the region of stability specified by the uniform gain

margin is a line segment between points gmlk and gmk in the gain space,
gm2lI

where k is the vector

k ( kit k2,) . , kn)  (32)

In the phase space, the absolute gains of all feedback loops are assumed

unperturbed. To determine the region of stability in the phase space, all

elements in K(jw ) must be selected to be complex constants of unity

magnitude, i.e.,

3-84
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K(j) diag[ e " 0  ej 2.  ejfn (33) :,,

Thus, if the uniform phase margin of a MIMO system at a nominal gain KjCjW)

given by (33) is [ 4 m I  2  then the system is stable when

L~jwi) eie' KQW) (34)

for all 0 satisfying ml < e0 < m2" The coordinates of the phase space

are loop phases (phase angles of L(jc) given by (33) and (34) )e,

where 0. = i + 60, for i = 1,2,- ,n. Thus, the region of stability

specified by the uniform phase margin is a line segment between

+ mle and 4 + m2e in the phase space, where e and 0 are the

n-vectors given by

e (5

1l 2 " n  ) (36)

In contrast with the uniform stability margins, the regions of

stability prescribed by independent stability margins are hypercubes in the

gain and phase spaces. It is easy to see from Definition I that if the

independent gain margin of a MIM0 system is [ga' gb] the system is stable

when U

V.

L(jw) = diag[ ! 2n (37)
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with g < g~for i=1,2,. -,n. If the independent phase margin of a .r'

MIMO system is a' Ithe system is stable when *I .

a b

L(j)) -diag[ e e2 e n ](38)

with <a <0. < b for i=1.,2,. * -,n.

Since the operating points inside the hypercube of the independent

stability margins are guaranteed to be stable, they may be used as nominal-

gains KQW) in (30) and (34) to determine the one dimensional regions of

* stability in the n-dimensional gain and phase spaces.

EW, -

Example: For the purpose of comparison, the 8th order lateral attitude

control system of a drone aircraft used in Ref. 5 is used here.

G(s)

r 6

-CSIA -'B

Fig. 2 Lateral attitude control system of a drone aircraftoa-
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The block diagram of the system is given in Fig. 2 and the numerical data

of Fig. 2 are given in Table 1. The perturbation matrix L(s) is

characterized by

e4o.4 1*.~ \

where 6 01, and 2 are constants in the gain and phase margin

calculations.

The graphs of the minimum magnitudes of the eigenvalues and singular

values of I+H(jCL)G(jwi) and I+{H(jw)G(jco)} are plotted versus frequency in

Fig. 3 and Fig. 4. The minimum values of these curves are found to be

CI mini minj[ +H(L)j)] 0.444)

- _ I + H(jw(jcL)) 0.2 649 (41)

mini

a a 11ii CI + {H(jwL)G(jwL)} 1 I 0.2279 (43)
0 W3

Ot.
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1.4 . *

1.2 -

0.U

I2-

~0.6 ~'

0.4-

0.1 1.0 10.0 100
FREQUENCY

Fig. 3 Minimum eigenvalue and .9of return difference matrix of Fig. 2
when L(jWL)=

2.0

1.6

Cm1.2

0.8

0.4

0.1 1.0
FREQUENCY

Fig. 4 Minimum eigenvalue and .2 of inverse return difference miatrix
of Fig. 2 when L(jw) I1
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The independent gain and phase margins (IGM and IPM, respectively), may be

calculated from a and a as
0 0 P P

IGM= [ 1/(l +o) , 1/(l -co') ] = [ 0.8024 , 1.3268 1 (44) V.

IGM 1 1 - a " , 1 + a - ] 1 0.7721 , 1.2279 1 (45)

IPM = -2sin- (a'/2) , 2sin ( /2) ] = -14.1470 14.1470 1 (46)
0 0

IPM = [ -2sin-1(a '/2) , 2sin- (a '/2) ] = 1 -13.090 13.090 ] (47)
0 0

Note that the union of the regions of stability found by any sufficient

stability criteria is contained in the actual region of stability. Hence,

the gain margins of (44) and (45) may be combined. Similarly, the phase

margins of (46) and (47) may also be combined, but the right-hand side of

(47) is already contained in that of (46). Thus,

IGM 1 0.7721 , 1.3268 1 (48)

IPM 1 4 . 1 4 7 ', 14 .14 7 ' (49)

The regions of stability represented by (48) and (49) are shown as squares

in the gain and phase planes in Fig. 5 and Fig. 6, respectively. These are

the regions of stability specified by singular value robust stability

criteria for independent loop gain variations when phase angles are kept at

nominal values, and for independent loop phase variations when loop gains

are kept at nominal values. Each point (S, 2 ) in the gain plane of Fig. 5

represents an operating point of the system of Fig. 2, when
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L diag[O1 ,l2. Similarly) each point ( l 2)in the phase plane of ~ -
Fig. 6 represents an operating point of the system of Fig. 2) when

L=diag[ e e . If the system operates anywhere inside the square

ABCD in Fig. 5 or PQRS in Fig. 6, it is stable.

3.0 A"(8.522, 14.644) B"(5.227, 5.227)

7.0
* LOOP

GAIN
1P2 B A- (0.7721, 1.3268)

B=(1.3268, 1.3268)
1.0c" C=(1.3268, 0.7721)

0=(0.7721, 0.7721)

0 C

0 1.0 2.0 3.0

LOOP GAIN/3

Fig. 5 Gain-plane region of stability for the system of Fig. 2
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1- - ..-- rQr..:- ,. .

PHASE

-200V ,R°

-60 o 0 -200 200" 400::00

P zR:- LOO-PAS.0

• -400

Fig. 6 Phase-plane region of stability for the system of Fig. 2 222 "

The uniform gain and phase margins (where 0I= 2= and.,. ,

el e 2 = e in (39) ) for which K(jw) = I are calculated from (X and ao of

(40) and (42). These are found to be (0.5583, 2.8523) and (-37.895°0.. ...

37.8950), respectively. It is seen that these margins are much larger (less.-"::)-

conservative) than those in (48) and (49), but yield only line segments in

the gain and phase spaces versus the squares BCD and PQRS in Figs. 5 and 6--

obtained trough independent margins. However, these line segments obtained'-...

by uniform margins can be used to extend the regions of stability in "'''.'

certain directions considerably beyond what can be established by i '

independen t ma rg ins. '';"'

LOOPP'1

PHASE)i

-:,..'

.- '. ' .- ,. "..' .'.,.-; ." .- - '-..-... ,..-. -.. -. .-.. [,.-. , - .. .. .. .* . .. ., • , . . . . "..'-".



To demonstrate this use of uniform gain and phase margins, let the

nominal system be operating at point A (Fig. 5) and assume uniform

perturbations. The uniform gain margins may be found by (22) and (28) using

•7721 0",- .

K(jw) = K = (50)
i, ~~0 1.3268],.,.. .a

The graphs of the minimum magnitude of the eigenvalues of I+H(jQo)G(jQ)K " S

K-a
and I+-H(jw)G~jc)K are plotted versus frequency in Fig. 7. The minimuma

values of these curves are found to be

o C) "I )i[I + H(Jw)G(jw)KI= 0.9094 (51)
rain rain j)}-

a mm i [I + {H(joL)G(j)K = 0.6058 (52)
o0 W i-" a

2.5

22.0

1.5

0.5- _a
05 2- mnA[ H~Y1

0.1 1.0 10.0

FREQUENCY

Fig. 7 Minimum eigenvalues when the system is operating at A in Fig. 5
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The uniform gain margins based on the Nyquist and inverse Nyquist

* formulations are found to be

UGM 1/1(l + ax M 11 x) 0.5237 11.0374] (53)
0 0

UGHM I f 1 1 + a~ ~ ..3942 1.05 (54) h

respectively. The combined UGM is

UGM =10.3942 ,11.0374 11(55)

g The combined UGM~ of (55) specifies that the operating points on the line

* segment AAA" in the gain plane (Fig. 5) are stable, where

O A'/OA 0.3942 (56)

OA"/OA =11.0374 (57)

where the upper bar denotes the length of the line segment. Applying

*similar computations to points B, C, and D in Fig. 5 shows that the

operating points on the line segments DI2BB" and C'CC" are stable operating

points, where

OD'/OD =0.7018 (58)

S."O-B 3.9397 (9

EC/OC 0.7718 (60)
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6OC7/0OC =1.4146 (61)

Table 2 shows the values of a and a at points B, C, and D. Note that the
0 0

points B' and D" are not shown in Fig. 5 as they lie between the endpoints '

B" and D'.

On the phase plane, let the system be operating at point P and assume

uniform perturbations. The uniform phase margins may be found by formulas

(23), (24), and (29), using

e 0

KQWL&) =K =I(62)

p
ej14.147

The graphs of the minimum magnitude of the eigenvalues of I+H(jw)G(jwA)K~
-1

and I+{HjW)G~jW)K )} are plotted versus frequency in Fig. 8. The minimum
p

values of these curves are found to be

"I [I +H(jcJGQjo)K] 0.7506 (63

, min mm -1

X.[I +{H1(jw)G(jcw)K } =0.4550 (64)

0 W p
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2.0

""a.1.6 -2 .~ .~

~1.2
CM

1 --minj [iH K I
S. itl Vi +HGKP)l

0.1 1.0
FREQUENCY

Fig. 8 Minimum eigenvalues when the system is operating at P in Fig. 6

The uniform phase margins (UP1) based on the Nyquist and inverse Nyquist

formulations, respectively, are found to be

UPH = -2sin- (L "12) ,2amn ((x "/2) 1=1-44.0850, 44.085' (65)

00

MMI -2sin- (a "/2) ,2sin (a "/2) 1=1-26.301', 26.301'1 (66)
0 0

The region of stability specified by (66) is contained inside the one

specified by (65). Hence, the uniform phase margin is given by (65). Thus,

the operating points on the line segment P'PP" in the phase plane (Figure

6) are stable, with

S3-95



P'P = P =F2 x 44.085' (67)

Similar computations on points Q, R, and S show that operating points on

line segments S'SQQ" and R'R'R" are stable operating points, with

5S 2S 2 x 23.570' (68)

QQ F2 Jj x 48.6340 (69)

RiR RR" F x 30.5100 (70)

Table 2 shows the values of U and a at points Q, R, and S. Once again, Q-
1" 0 0

and S" are not shown in Fig. 6 as they lie between Q" and S'. The regions

of stability in the gain and phase planes are thus extended considerably

* beyond the squares specified by the singular values along selected

straight-line segments with the aid of uniform stability margins.

Note that near the actual boundary of stability, where the minimum

singular value is small, ill-conditioning may be present and eigenvalue

computations may be inaccurate. However, in that area, both the minimum

singular value and the minimum eigenvalue are near zero, and there the

singular value is preferable.

Conclus ions

The concept of uniform stability margins is developed on the basis of

uniform variations of multiloop gains and phases. It is proved that uniform

stability margins may be computed by substituting modulii of eigenvalues
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for singular values in the singular-value-bounded robust stability

X criteria. This is the least conservative computation that is possible when

a norm-bound robust stability criterion is used. .-.

Regions of stability in the gain and phase spaces as specified by

uniform stability margins are line segments which pass through the given V.

nominal operating points. The uniform stability margins may be used to

extend the regions of stability beyond what can be specified by the

singular values of the return difference matrix or the inverse return

difference matrix along selected straight lines in the least conservative

manner.
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Table 1 Numerical data for the system of Fig. 2

F~s)= tj1491/s 01

-3

-0.0827 -0.1423x10 -0.9994 0.0414 0 0.1862

-46.86 -2.757 0.3896 0 -124 .3 128.6

-0.4248 -0.06224 -0.0671 0 -8.792 -20.46

0 1 0 0 0 0

0000 -20. 0

0 0 0 0 0 -20.

-0.03701 spiral mode

0.1889 1 jl.051 dutch roll - * r

X(Fo = -3.25 roll convergence

-20.0 . elevon actuator

-20.0 rudder actuator

FO o]

0~ 0]

10 0 0.07 1 0 0 Oj

1 0

0 1
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Table 2 Minimum eigenvalues frpoints inFg.5and .%. -

Point

B C D QR S

a 0.7462 0.2931 0.4003 0.8236 0.5262 0.4085

a 0.5648 0.2282 0.2982 0.4850 0.3974 0.3281
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REGIONS OF STABILITY FOR GAIN OR PHASE VARIATIONS IN MULTIVARIABLE SYSTEMS , -:

Hsi-Han Yeh*, Siva S Banda+ , and Lt D Brett Ridgely2

Flight Dynamics Laboratory (AFWAL/FIGC)

Wright-Patterson Air Force Base, OH 45433

Abstract

. .

This paper extends the well-known norm-bounded robust stability

criteria from strict inequalities that specify open sets to inequalities

that specify closed sets. Both the Nyquist and inverse Nyquist type of

norm-bounded criteria are considered. The extended criteria form the

theoretical basis in the formulation of an iterative procedure for

searching the regions of stability for simultaneous gain or phase

variations in multivariable feedback systems. The basic idea of the

*!i iterative procedure lies in successively perturbing the feedback system .

from a set of nominal gains or phases that are on the boundary of a ".'

previously established region of stability. The iterative procedure is

.: illustrated by a numerical example.

*On leave from the University of Kentucky under AFOSR resident research ..-

program, 1982-1984
+ Aerospace Engineer ~
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I Introduction

In extending the useful concept of single variable stability margins to

multiple-input multiple-output (MIMO) feedback systems, diversity and

ambiguity inevitably arise. The commonly used definitions of MIMO

stability margins lead to what may be called independent gain and phase -:

margins. They are defined as limits vithin vhich the gains of all feedback

loops may vary independently at the same time without destablizing the -"'

system, while the phase angles remain at their nominal values and vice

versa [1-3].

The MIMO independent gain and phase margins may be evaluated via

norm-bounded robust stability criteria. The resulting stability margins

specify two cubical regions of stability in the gain and phase spaces [2,

31. As the norm-bounded robust stability criteria are sufficient

conditions, the cubical regions of stability are often conservative (i.e.,

they yield only a portion of the actual stability region). If gain and

phase margins are used in the specifications of a MIMO system, the actual

regions of stability in the gain and phase spaces may be desired. However,

there is no systematic or iterative method for computing the boundaries of

the actual regions of stability at this time, to the authors' knowledge.

In a recent paper [2] where the desire to know the actual stability

regions of a two-loop system arises, closed-loop poles are computed for

many pairs of real loop gains. Pairs of real gains which yield purely

imaginary closed-loop poles are points on the boundary of the actual region

of stability in the gain plane. To compute the boundary of the stability

region in the phase plane, fictitious complex loop gains of unit magnitude

and variable phase angles are inserted into the loops. The complex

determinant of the return difference matrix as a function of frequency is

3- 102
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plotted for many pairs of phase angles. Pairs of phase angles which yield

a zero determinent at some frequency are points on the boundary of the

actual region of stability in the phase plane. It is evident that this is

a brute force method. There are no guidelines for finding points on the

boundaries. The computation is formidable and is virtually impossible when

the system has more than two loops.

This paper presents an iterative procedure for obtaining the actual

regions of stability in the gain and phase spaces. This method is based

upon the simple idea of perturbing the system further from a set of nominal

gains that are on the boundary of a previously established region of

stability. Thus instead of finding points which are on the boundaries of

the actual regions of stability, the proposed method successively expands

the regions of stability from the hypercubes that are originally

established by the norm-bounded robustness stability criteria.

The theoretical basis of this iterative process is the fact that on the

boundaries of the open sets of perturbation matrices specified by the

norm-bounded stability criteria, the stability of the perturbed system can

be conveniently determined by the invertibility of the return-difference

matrix, which will then be used in the next iteration. This fact and its

_7 conditions may be regarded as extensions of the norm-bounded stability

criteria. They are formulated into three theorems and two corollaries in

the next section, and the proofs are given in the Appendices.

II. Norm-Bounded Robust Stability Criteria

Consider the MIMO feedback system of Fig 1, where G(s) is the nominal

loop transfer function and L(s) is a transfer matrix representing the

perturbation of the loop transfer matrix from its nominal value. For the
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problem of finding a set of L(s) that does not destabilize the feedback

system, two robust stability criteria can be written, i.e., for all s on

the Nyquist contour,

jL(s) - I] < E[I + G (1)

or

-[L (s) I] < a q< [I + G(s)] (2)

where a,< 1, U(.) is the maximum singular value of the matrix in the

argument, .2(-) the minimum singular value, and I is the identity matrix.

--- L(s) 'G(s) >"'

Fig. 1 A MIMO Feedback System

These criteria are sufficient conditions derived [1, 5] on the basis

of multivariable Nyquist theory. The following preliminary conditions on

the nominal ( L(s)=I ) and perturbed ( L(s) I I ) systems must hold [1, 6]

before criteria (1) and (2) can be applied:

(a) The open-loop characteristic polynomials (the common denominator of

the elements of G(s) or the denominator of the determinant of the return * .,..

KI
difference matrix) of the nominal system and the perturbed system must have

the same number of closed right-half plane roots.
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(b) All imaginary poles of the open-loop perturbed system must also be :;.-,-.

poles of the open-loop nominal system. That is, L(s) does not introduce

imaginary poles into G(s)L(s).

(c) The nominal system must be closed-loop stable. ' ''.;

Robustness criteria (1) and (2) are special cases of inequalities

involving general matrix norms [6-81, namely,

IlLs) i < --- -l[ ---- -) --f E sD (3) j[I + G 1 (9..-1 R':

and

IjL-1(s)- III < D --i [ r-- s]_I- sED (4)
G( 1+ ,R6,1-.-1

where DR is the Nyquist contour, a .. 1, and the vertical double

bars 1I'II denote general matrix norms which include the maximum singular

value as a special case. Condition (3) follows from a simple

gene-alization of the deriviation given in [51, and has been used in other

papers [6-8]. Condition (4) can be derived in the same fashion as the

derivation of condition (2), which is given in [1]. However, because

L (s)-I does not appear as a linear term in the convex combination of G(s)

and G(s)L(s), the generalization of the proof of (2) (as found in Ref [11)

to the proof of (4) is not trivial. The proof of (4) is given in Appendix

A.

The right-hand sides of (1) - (4) are measures of the nearness of W

G- (s) or G(s) to some critical point of stability. In view of their

j similarity to the Nyquist and inverse Nyquist methods for single-input

single-output (SISO) systems, conditions (1) and (3) may be referred to as

the inverse Nyquist formulation, and conditions (2) and (4) the Nyquist

formulation.
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Conditions (3) and (4) specify open sets Z and 0 where

(s Ls) 11<------------------- - Ec (5

'ALS 1 I I -- - ----- -- ~.'Ls)I- II I
<Ia< -s)[ -I's + -I <~~~ E 5D R a< 11(6)

If the perturbation matrix L(s) of Fig. 1 belongs to . or E', then the

feedback system is stable. However, since (3) and (4) are sufficient

conditions, E and Z are only subsets of the set of all L(s) that do not

cause the feedback system to become unstable.

Let Z and Z be boundaries of the sets Z and Z , respectively. The

closed sets Z U and Z E are defined by

(a u'r 1 I Il I -[- ---- )Jli sE D Rj (7)
1 )' " '

• AlL(s) IIL (S) - - + G(s)-<' Be s DRO 1 (8)

Note that if for some sC DR the equalities hold for the norm relations in

the bracketed terms in (7) or (8), then L(s) c f or L(s) ,

respectively. Criterion (3) can be readily extended to include points on

- if I+G(s)L(s) is nonsingular at these points. Criterion (4) can also

be extended to include points on Z if l+G(s)L(s) is nonsingular, provided

that spectral norms are used, or that L(s) is diagonal. These are formally

stated in the following Theorems and their Corollaries.

" Theorem 1: Under the preliminary conditions of the norm-bounded robust

stability criteria, the feedback system of Fig. I is stable if I+G(s)L(s)

is nonsingular and
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Proof: See Appendix B.

It has been shown in a previous paper [3] that when complex loop gains

of the system of Fig. 1 are uniformly perturbed ( L(s)- t(s)I ), a matrix

norm H imwhich is subordinate to some vector norm may be chosen such

that

-~~ Iur = (s) 1i (10)

and

-- - - - 1- - - - - - -1I (11))1

11[I + G1 _ )fm ti~ s]

where .jsignifies absolute value and X(-) signifies the eigenvalue that

has the minimum magnitude. Therefore, if L(s) is constrained to be

L(s) Z (s)I, we have the following Corollary:

Corollary 1.1: Under the preliminary conditions of the norm-bounded robust

stability criteria, the feedback system of Fig. 1 is stable if

(a) L(s) - (s)I (12)

(b) J(s) .- i 1 < (I + G-(s)I a scD~ (13)

(c) X[I + G~s)L(s)] 0 s seD (14)
R

Proof: Condition (14) holds iff I+G(9)L(s) is nonsingular. Substituting

(12) into (9) and using establishes (13) as a sufficient condition

for stability. This completes the proof.

*Theorem 2: Under the preliminary conditions of the norm-bounded robust

stability criteria, the feedback system of Fig. I is stable if
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c[L (s)Ij~ ~.~2(1+ ~s) ;S~. 1R a. 1 (15)

and

[I1 + G(s)L(s)] 00 C BDR (16)

Proof: See Appendix C. Note that (16) holds iff I+G(s)L(s) is

nons ingular.

Theorem, 3: Under the preliminary conditions of the norm-bounded robust

stability criteria, the feedback system of Fig. 1 is stable if the

following hold:

(a) L~s) is diagonal,

(b) I+G(s)L~s) is nonsingular for all cDR

(c) The matrix norm is subordinate to some vector norm, and

(d) lIAs) -IlSa -------- a ECD R . 1 (17)

Proof: See Appendix D.

For the same reasons as in the establishment of Corollary 1.1, we also

have the following corollary: W

* Corollary 3.1: Under the preliminary conditions of the norm-bounded robust

* stability criteria, the feedback system of Fig. 1 is stable if

(a) L(s) - (s)I (18)

J.(b) t(s)) - I+~s s , D R . 1 (19)

and

(c) .. I+G(s)L(s)J 00 C sDR (20)

Proof: Analogous to the proof of Corollary 1.1.
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Theorems 1, 2 and 3 essentially argue that the robustness of a system

that is already perturbed by an L(s) on or Ecan be determined by

[I+{G(s)L(s)}J]FI or If[I+G(s)L(s)] - I since the nonsingularity of

I+G(s)L(s) guarantees the applicability of the robust stability criteria to

the perturbed system. This justifies the idea of successively expanding

the region of stability by successively perturbing the system using a

perturbation matrix that is on the boundary of a previously established

region of stability. When the inverse Nyquist formulation is used in this

successive perturbation, L(s) may be non-diagonal and any matrix norm can

be used, as ruled by Theorem 1. For the Nyquist formulation, it has only

been established here that the spectral norm (maximum singular value)

should be used when L(s) is nondiagonal (Theorem 2), but any subordinate

matrix norm can be used when L(s) is diagonal. Fortunately, this poses no

real problem because in stability margin computations, L(s) is usually

chosen to be diagonal, and to every vector norm there is unique subordinate

matrix norm. Furthermore, when there is no crossfeed perturbation (L(s) is

diagonal) and all loops are uniformly perturbed (diagonal elements of L(s)

are identical), the robustness, and therefore the stability margins, may be

measured using the magnitude of the minimum eigenvalue of the

return-difference or the inverse-return-difference matrix (Corollaries 1.1

and 3.1). This enables the iterative expansions to make larger strides

than using any norm measure, but restricts the expansion to certain

directions. Further development of this idea of expanding the region of

stability by an iterative procedure is presented in the next section, which g

is followed by a numerical example.
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III. Regions of Stability in Gain and Phase Spaces

In this section, the development will be based on the Nyquist

formulation. Results based on the inverse Nyquist formulation can be .

similarly stated.

For the system of Fig. I, let L(s) be diagonal with complex constant

elements ., i.e.,

jo.
ti(s) = Zi  P.e i = 1, 2, , n (21)

Where p, and 0. are real numbers. For notational convenience, let

ti= ( i, e2 , , In ) (22)

L diag[ l (23)

The variable s is dropped from L(s) because L(s) is constant for computing

gain and phase margins.

The gain region of stability is the region in the space of

" 0 2 " P n ) in which the MIMO system of Fig. 1 is stable if 0. = 0

for all i. The phase region of stability is the region in the space of

C l0 2' , n) in which the MIN0 system of Fig. 1 is stable

* if P. = I for all i. This concept of regions of stability in gain and

*- phase spaces of MIMO systems is a natural extension of the stability margin

concept of SISO systems, where gain margins are computed when the phase

angle of the loop is held constant at the nominal value, and phase margins

are computed when the loop gain is held at the nominal value.
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When L(s) is given by (23), a subset of the region of stability in the

gain or phase space is easily established via formula (6). The problem nowvW

is to derive an iterative procedure to extend this subset into the entire

region of stability. The basic idea of this iterative procedure is to

alter the perturbation matrix successively until the boundary of the region

of stability is reached, as illustrated in the block diagram of Fig. 2.

I+

Fig. 2 A MIMO Feedback System With Successive Gain Perturbations

Region of Stability in the Gain Space

* In the MIMO system of Fig. 2, let

P. P ( P 24

log -i log P, log Pi' log P. (25)

L. diag[ P. 1(26)

A
L. L L. diag[ P ]diag[ P.] for i >,0(27)

L.=L. I for i<O0 (28)



To each set of L. (or given by (26) -(28) there corresponds a set R.

AA

then diag[ p I belongs to the set of L~ (or Li) The converse is also true.

-~Let RK denote the set of p{ ( P1 9 P2 ' Pd p )} such that L

(-diagi p 1) satisfies inequality (4). Thus, if p 0 R 0 and

L -diag[ p 1 then the system of Fig. 2 for i -0 is stable. It is -

0

easily shown that if spectral norms (maximum singular values) are used in

*(4), R is an open hypercube (not including the boundary) in the gain space
0

characterized by [1, 2, 3]

-+ l a 0-c (29

*for j 1, 2 , n , where a is either min [I+G(s)] or 1, whichever
sSR

is smaller. In logarithmic units (29) may be rewritten as

-log( 1 + ax < log p. < 1og11/( 1 -a (30)
0 03

*Here R is a hypercube whose edges are parallel to the coordinates of the
0

*gain space and whose diagonal extends from 7 e log~l + a )}to
__ 0

f e.-log[ 1/(0 - L) I 1 for e= (1, ,* * 1) (see Fig. 3).

0-'i
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R

Let R° denote the boundary of the hypercube Ro . Let P be a point.-'..-

arbitrarily chosen from R0 , and L0 - diag[ po 1. If I+G(s)L is singular at :';'-.

00

some s DR then det[I + G(s)Lo I has a root on DR . This means that the

So R

A -1

closed-loop transfer matrix G(s)L (I + GsL) has a pole on DR. Thus, :£ -- '.-

0 00

the ryst oFig. 2 for i a 0 is unstable and P is a point on the

boundary of the region of stability in the gain space. On the other hand,

if l+G(s)Lo  is nonsingular for all s(I DR then in view of Theorem 2, the

system of Fig. 2 for i 0 is stable. Therefore, the norm-bounded robust

stability criteria may be applied to Fig. 2 for i 1. As a result, the

system of Fig. 2 for i 1 is stable if I+G(s)L is nonsingular for all
0

s e DR and

LI II < X sC DR  1 (31) ":" :

L1 - Ia < a1 '
11(l + G(s)L 11 C ~ ~ 1 (1

Let RI be the set in the gain space corresponding to the set of L s

A

that satisfy (31). Let R be the set in the gain space corresponding to

* * . -.

- : ... . . . . . . . .. ....... ............... I
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diagfp -_

the set of Ll ssuch that L LoL diag[P ]diag[ ], with p1 ER1 for a k'
o.' -0-..

given P . Again, if spectral norms are used, R1 is found to be an open

hypercube in the gain space (not shown in Fig. 3), characterized by

-log( 1 + a1 ) < log P. < log[ 1/( 1 - a1 ) ] (32)

infor j 1, 2,"-, n, and a is either m [I + G(s)L I or 1, whichever1 s DR 0
A

is smaller. For a given P, R is readily seen to be characterized by

-log(1 + a1 ) + log Poj < log P. < log[ 1/l - a1)] + log P oj (33)

A
The set R is the hypercube (Fig. 3) whose main diagonal extends from

{ logo - t-log(l + a) } to { logp + e.log[1/(1 - a)] } where10 -0
i:ie = (1, 1, "" " 1).

Ad5
The procedure of generating R1 from a point on R may be iterated again

0A

by arbitrarily selecting a point P1 on the boundary of R 0 Rl. For

this P1 , if I+G(s)L1 is singular at some s DR then P is a point on the-. "R -,-1

boundary of the region of stability in the gain space. Therefore,

another P1 should be selected instead. Otherwise, R is found to be a-1 2

hypercube whose edges are parallel to the coordinates of the gain space and

whose diagonal extends from { log P - e•log(1 + 2 ) } to

{log P + e -log[1/(l - a2 ) where a2  may be chosen as

a2  min (1-D [ I+ 1  --} (34)--

For the ith iteration, a point p i is arbitrarily selected on the

* i-1 A A
boundary of U R. (where RO = R ). If I+G(s)Li 1 is singular for some

J=( J 0 0

s E DR then P iiis already a point on the boundary of the region of

3-114
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si; :liin the gain space andanothe p. should be tried. I

I+G~s)L isnonsingular for all a eD% then R. is established asa

hyprcue wthedges parallel to the coordinates of the gain space and with

a diagonal extending from { log P 1  - .log(l + ai) to %

{log P i1+ e *log~l/(l a vx) here a . may be chosen as

a ~min l I s~ m 2. 1 I + G(s)L~~ (35)

*If the iteration process goes on until U R. is so large that
1=0

mm 9[1 + G(s)L. is negligible for all p.on the boundary of U R.,

then 1j R. is approximately the region of stability in the gain space.

It has been shown that [1 if the loop gains of the systems of Fig. 2 O-

vary uniformly, ( that is, L(s) - t(s)I for some scalar function L(s))

then the robust stability condition (4) is implied by

t(1/(s)) -1 < ao .. G~s ; sD~ a .$1 (36)

1 AL.+G5/R 0

where X(* is the eigenvalue with the smallest absolute value. When

t(s) -P =real constant, condition (36) requires that

-log( 1 + a ) < log P < log( Ml1 a ))(37)
0 0

min~ [
where a 0is the smaller of seD R I +. Gs) or 1. However, the region

of stability for L(s) as determined by (36) is not a hypercube, but a line

sget between {- e log(1 + a )}and { E logll/(l-a)I} fo
semn0 0fo

Based upon inequality (36) and Corollary 3.1 an iterative procedure for

searching the region of stability using the minimumi eigenvalue of the

3-1~15
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return difference matrix can be formulated. The procedure still starts on

the boundary of the set R of Fig. 3 because the nominal system is required

to be stable. First, chose L 0diag[ po  for somep e0 . For i - 1 in0 -o -o "a "'

the system of Fig. 2, the diagonal elements of L are required to be

Aidentical, i.e., P11  P1Of 2  .... Pn" The set R1 (in the space of ''::

(P p . ". P) ) corresponding to L L L ) is characterized by
1 2n 1 o0

log p. - log po. + logp (38)

-log( 1 + a1 ) < logP < log[ I/( 1 -a1 ) 1 (39)

for j 1, 2,', n, where

a I min { 1, I + G(s)L } (40)

In other words, the set R is a line segment of unity slope extending from

log - _.log(1+a to { log _ + e-log[l/(l-ai)] } (point A to point

. B in Fig. 3). In the next iteration, p1 is chosen at point B and R is the

-"" line segment of unity slope, extending from { log p1 - e.log(l+a2) }

( between points A and B on the line segment AB) to

{ log P1 + e.log[l/(1-a2 )] } (at point B'), where

a- min 1 n J[ I + G(s)L 1 ]} (41)..- 2  rn{ISDR _ .

In this fashion, the iteration will eventually extend the line segment AB

in the upward direction sufficiently close to the boundary of the region of

stability. Iteration can also be initiated at point A and extend the line

segment BA in the downward direction towards the boundary of the region of
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stability. Note that since the absolute value of an eigenvalue is greater

than or equal to the minimum singular value of a given matrix, the

eigenvalue method generally makes larger strides than the singular value

method in claiming the region of stability. But each iteration of the

singular value method claims a region inside an n-dimensional hypercube,

whereas each iteration of the eigenvalue method claims a line segment along

the diagonal of the hypercube obtained by the singular value method.

The eigenvalue method also needs to be initiated from points that are

outside of the set R U R obtained by the singular value criterion but are

still inside the regions of stability. This can be done with the aid of

singular value iterations. Thus, the combined use of the two methods is

most advantageous in establishing the region of stability.

Region of Stability in the Phase Space

In the MIMO system of Fig. 2, let

-- ( il' 8i2' " " ) (42)

e i-(e e e in) (43)

SL. 
- diag[ e (44)

A -i-l
L. L L diag[ e Idiagi L ] for i , 0 (45)

• For i < 0, L. and L. are again set equal to I. Let S denote the set

of { ( 1 , 0 )n  ) such that L ( diag[ e -  satisfies (4).

Thus, if E CS and Lo  diag[ e ] )0 then the system of Fig. 2 for

-i 0 is stable. It has been shown that if spectral norms are used in (4),

I h
_* ' - l 1 7 . . .
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S is an open hypercube (excluding the boundary) in the phase space (Fig.
0

4), characterized by [1, 2, 3]

-2sin( a /2) < 6. < 2sin ( a /2) (46)
0 30

for j -1, 2,---, n, where CL is either sne R [I+G(s)] or 1, whichever is

smaller.

2 B

S2

00
S -o

A 01

Fig. 4 Establishing the Region of Stability in the Phase Space

Now, following the same reasoning as in the derivation of the iterative

procedure used in the gain space, select a point e (arbitrarily) from the
0

boundary of So. An open set Swhich is guaranteed by the robust stability

criterion (4) to be within the region of stability can be constructed

around 80. If spectral norms are used in (4), then S is characterized by

* -2sin 1- /2) < 8. < 0.+ 2sin- a /2) (47)
0] 1 j 3a-
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for j - 1, 2,-"', n, where li is either R [IG(s)L or 1, whichever

is smaller. For the ith iteration, a point 0.1 is arbitratily selected on
i-i S -IUA A

the boundary of U S (where S - S ). If I+G(s)L_ is singular for some 2.
J=03 0 0 -

s E DR, then 8i_ is a point on the boundary of the region of stability in

the phase space. Another _ should be tried. Otherwise, S. is

established as a hypercube with edges parallel to the coordinates of the

phase space, centered at 0. and length of each edge equal to

4sin (i/2), i.e.,

6. -2sin-i(a/2) < e. < a n- 2 )  (48)

for j 1 1, 2,..., n, where a. is computed by (35) with (42) - (44) used

for Li_. In other words, S. is a hypercube, whose diagonal has unity

slope, and extends from 0i_ 1 -29in-l( ui/2)}e to-ei-1 + {2sin- a 12)}e,

where e (1, 1,., 1) h

If the loop gains are uniformly perturbed i.e., L(s) = Z(s)I for some

scalar function t(s) (Fig. 1), the above procedure can also be formulated

with eigenvalues. The procedure again starts on the boundary of S,

because for 0 on S, the stability of the system of Fig. 2 for i 0 is .- -
0 0

determined by the singularity of its return-difference matrix, I+G(s)L 0

The iteration procedure, warranted by Theorem 3 and Corollary 3.1, is the

same as the one described for singular values, except that i is replaced

by ai, where

a. m rain I + (49)
2. R

A,

and S. i~s no longer a hypercube, but a line segment of unity slope along a

diagonal of the hypercube obtained by the singular-value method, extending
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from e. - -1 ~ 0 + [siJ1 (./2)]

from [2sin- (ai/2)]e to + [2sin- (a /2) } (point A to

A
point B in Fig. 4, for i 1), where e (1, 1,.., 1). In other words, S.

is the set of 0 characterized by

S i- l, j + di ; j 1, 2,...,n (50)

-2sin (a./2) < *. < 2sin (a.12) (51)

In both the gain space (in decibel units) and the phase space, the

eigenvalue method establishes regions of stability as line segments of

unity slope. Hence they give discrete representations of the regions of

stability. The eigenvalue method enables the iterative procedure to make

larger strides toward the boundary. The singular-value method assures that

the immediate neighborhood along the line segment claimed by the eigenvalue

method belongs to the region of stability. Numerically, singular value

computations are considered to be more accurate than eigenvalue

computations. The next section demonstrates the combined use of the two

methods in establishing the regions of stability through a lateral attitude

control system of a drone aircraft [2, 3] and compares the results with

what has been previously obtained via brute force computations. -'

The same iterative procedure based on the inverse Nyquist formulation

can be analogously stated. Since both the Nyquist and inverse Nyquist

formulations of the robust stability criteria are sufficient conditions,

the union of the stability regions established by both formulations in each

step is again a valid region of stability. Thus, the two formulations

complement one another and their combined use facilitates the establishment

* of the actual region of stability. The numerical example in the next

section also demonstrated the combined use of these two formulations.
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IV. Numerical Example

114.

Consider the 8th order lateral attitude control system of a drone

0 ~ aircraft used in References (2] and 131. The block diagram of the system

is given in Fig. 5 and the numerical data of Fig. 5 are given in Table 1

When computing the regions of stability in gain and phase spaces, the

perturbation matrix L is first expressed asj

L =diag( P e , Pe )(52)

G(s)

F~)L(s) H0(sl-F 0 V'IG 0

Fig. 5 Lateral Attitude Control System of a Drone Aircraft



4.-

______n of Stability in the Gain Space

Computation of the region of stability in the gain space is started by

setting = 0. Independent gain margins for the perturbed system may

be calculated using

-2Olog( 1 + a )< P. dB) < 2Olog[ 1/( 1 -a )I;j =1,2 (53)
0 0

and

-2Olog( I +a 0 < P. (dB) < 2Olog[ 1/( 1 -a -)] 1,2 (54)

where

a =min 1 + H(jwGr(jw)L 1(55)
0 W

aof + [ H(jw)G(jw)L I }(56)

Since (53) and (54) are sufficient conditions for stability, the union of

*the two inequalities is also a valid region of stability. This property

* will be used throughout this example.
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P (dB) "

E F

4

A B
2

H G

- -2 2
(dB:

D -2 C

Fig. 6 Gain-Plane Region of Stability -- Initial Stage I Calculations

The union of (53) and (54) form a square in the gain space, which is a

part of the actual region of stability. The initial region of stability

with L = I is shown as ABCD in Fig. 6. For the next iteration, chose L to

have the loop gains of point A in Fig. 6, and calculate (55) and (56) again

for this L. If a 0 or a #0, the system perturbed by this L is stable

(other-wise A is already on the boundary of the actual region of stability).

Point A may now be used as a new nominal operating point and (53) - (54)

are computed again using the new at and a ' to obtain square EFGH.
0 0

Successively using the upper-left corner of each square as a new nominal

operating point, as well as starting at point C and continuing with the

lower-right corners, forms the progression of squares shown in Fig. 7.
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These calculations are refered to as stage 1. As the squares approach the

actual boundary of the region of stability, the right-hand sides of (55)

and (56) become smaller and smaller, and so do the squares. It is not F

practical to expect _ to equal exactly zero (due to computational

difficulties to be mentioned later), therefore the iterations are stopped

either when o becomes extremely small or when 2 starts to increase from

one iteration to the next. The latter indicates that the boundary has been

crossed due to numerical errors in computing a and a -. This will also be
0 0

explained later in this section.

O2 (dB)

I .I

-12 -- 12

II
~m

Fig. 7 Gain-Plane Region of Stability -- Stage 1 Calculations Completed

m -12 -8 3 -4 o
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The union of all the squares in Fig. 7 is further expanded in the next

stage of the gain space computations, where uniform gain margins are used.

The uniform gain margin is obtained by combining (53) and (54), with 0
o~

and a 0 replaced by a and a 0 respectively, where . .f

min I + E(jw)G(jw)L ] I (57)

a o  I -

m.rin [( t> ::
a~ m0 1A + RQ w)cdG(joj)L ] (58)

For a system at the nominal operating point B (Fig. 8), L is chosen to have ,

the gains at B. The upper limit of the uniform gain margin gives the line

segment BJ of Fig. 8 as part of the region of stability. In the next

iteration, the elements of L are taken from point J and the line segment 3K

is established as part of the region of stability. This procedure is

repeated until the boundary is reached, which is determined the same way as I.

in the singular value computations.

77
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2. Fig. 8 Gain-Plane Region of Stability -- Combined Stage I & 2 Calculations
_%

Next, point D is used as the nominal operating point, and the lower -

limit of the uniform gain margin is used to produce line segment DM. The ""

upper limit of the margin does not extend the linear region beyond point J,

and therefore is unnecessary. The same is true for the lower limit of the

margin at point J (i.e., it does not extend beyond point M). The segment .

DM is then successively extended to the stability boundary. This "up" and

"down" procedure is then used on each of the upper-right and lower-left

corners of the remaining singular value squares. This completes stage two.

0
Realize that the union of the squares and 45 lines at the end of stage .

two is a valid subset of the region of stability. If this union yields a
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complete picture of the entire region, the computations are complete. If,

however, the range of the 450 lines is too small to yield a continuous

boundary of the region of stability, this range may be extended by choosing

stable points on the outermost lines and using stages one and two to probe

further into the region. This is referred to as stage three. Stage four

obtains finer detail at the boundary in a chosen area, if desired. Here,

points on the singular value squares (other than the corners) may be used

to generate more 45° lines, and stage two used to find the boundary points

along these lines.

All of the points on the boundary found through stage two calculations

(including those in stages three and four) may then be connected to form a

smooth curve. This curve should be drawn conservatively, that is, do not

allow the curve to exceed any of the boundary points. This curve then

represents the actual region of stability, and is shown in Fig. 9 for this

example. The squares and line segments are omitted from the figure for

clarity.
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(ca'/2) < G. (deg) < 2sin-lo'2) 12 (60)

where C and C 0 are still given by (55) and (56), and L I when the0 0

nominal operating point is at the origin of the phase plane. The union of

these inequalities is again used, but since the margins are symmetrical,

one will be completely contained within the other. Also, due to the

symmetry, the squares produced by singular values will be centered about

the chosen nominal operating point. In Stage 2 calculations, a and a 0 in0 o

(59) and (60) are replaced by a and a° , respectively, which are scill
0-0-*- -S

given by (57) and (58). Fig. 10 shows the squares and 450 lines produced by '-

stages one and two. Fig. 11 shows the completed region. Note that points

were added through stage three and stage four calculations. The boundary

here is more "uncertain" than in the gain space calculations due to the

lack of a back-up test -- this will be explained in the next subsection.
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Fig. 11 Phase-Plane Region of Stability -- Completed--""

Computat ional Comments '".)

There are several computational aspects of the iterative procedure that"'-- (:..

require further discussion. First, finding the precise location of the =

boundaries 2.s over-ambitious.• Practically speaking, only a good .,,

• .".-"

'* .. (

approximation ould ever be desired. Computationally speaking, finding the

exact minimum of the singular value or eigenvalue is nearly impossible due

to the fact that the minimum is found by evaluating the return and inverse

return difference matrices at a finite number of frequencies. Therefore, ;-".,

it is probable that the calculated minimum will only be close to the

actual. Unfortunately, this error will yield a value slightly larger than

3- 131........ *.*.*.,a*..,-..



M

PC %

the true minimum, yielding a larger than true margin. This is critical

near the boundary, since once the boundary is crossed, the minimum will

begin to increase and move the following iterations further into the ..

unstable region.

- This is not a disasterous result, however. If enough frequency samples

are taken (fifty points-per-decade seems to work well), the calculated

minimum will be very close to the actual. Also, there are ways to

determine when the boundary has been crossed. In the phase space, if the

minimum singular value becomes smaller and smaller in progressive %

iterations, then begins to increase, the first-increase results and the one
plm.

previous to it should be discarded to insure stability. In the gain space,

there is an even better solution, although the previous one will also

work. This solution is simply to check the closed-loop eigenvalues (to see

if they are all in the open left-half plane) at the loop gains in

question. This will not work in the phase space, since the transfer

function of the perturbation matrix in the s-domain is not known, and

therefore closed-loop eigenvalues cannot be computed.

The fact that closed-loop eigenvalues may be checked allows higher -'

accuracy in determining the actual region of stability in the gain

space. The "kink" in the phase space region (Fig. 11) may actually be a

"tube" as found in the gain space (Fig. 9). This is of little consequence

from a practical point of view, however, since the knowledge of the region

to that precision would not alter the analyst's conclusions as to the

merits or deficiencies of the designed system.

it may be worth noting that singular values alone may be used to

determine the entire region, while eigenvalues alone are p

insufficient. Singular values could be used in the stage two (and four)

computations, but in many cases this would require a great many more
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iterations to reach the boundary. This is due to the fact that the "

singular value computations are more conservative than eigenvalues, as
.9.o

shown in [31. Eigenvalues cannot be used in stage one (or three), however,

as they produce only lines with a positive unity slope. They do not allow

movement along lines with negative slope, and therefore eigenvalue

computations alone would only yield the boundary points along a line of

unity slope passing through the origin (nominal system operating point).

V. Conclusions

The extension of the norm-bounded robust stability criteria from strict

inequalities specifying open sets to inequalities specifying closed sets

forms the theoretical basis of an iterative procedure for searching the

regions of stability for simultaneous gain or phase variations in

multivariable feedback systems. The iterative procedure is initiated in

the interior of the region of stability and terminates when the boundary is

reached. Algorithms can be written so that complete regions of stability

in the gain and phase spaces of a multi-input multi-output feedback system

can be determined. These algorithms are useful where information about the

boundaries of the regions of stability in the gain and phase spaces is

desired.
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Appendix. A

Proof of 4).As A sufficient condition for stability
of the system of Fi.g

This proof is facilitated by the folloving lema:N

Lemma 1. Let L(s) be a square matrix, and

P(s I - )I + Ls (A-1)

if

then, for all 6 e10, 11,

I p I 11 s j (A-3)

Proof: (For notational brevity, the variable s vill be suppressed from

here on). Let E be defined as

E~L I (A-4)

It is seen from (A-1) and (A-4) that

P6L -L P -I +(1-6)E (A-5)

SincellEll < 1, 11(1-6)E11 < 1. Therefore [I + (1- 6 )E]- exists as a bounded

linear operator and [91
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[ I (1-6 )E -1  6 -(- 1)UEn (A-6)

where the series on the right is convergent in the norm. Hence, by virtue

of (A-5), for all 6E(O, 11,

(IP.-'L(I 11 1 + 1 I 6 )E lj1 z(E 1 -6 )(JjEjjnn=0 -

---- --- --- ------ - <(A-7) -:"" "
1 ,1 - 1 I1 6 -

where it is assumed that the matrix norm is subordinate to some vector norm

so that 11lium 1- Now, by virtue of (A-1),

P6 1 + (L- ) - I (A-8)

Hence

P6 -l _ I= p- ( ) I -L 6P LE (A-9)

Therefore, by virtue of (A-7) and (A-9),

I- 111 6 jI61 1111" lIfrll (. A-10)

The fact that (A-3) holds for 6 - 0 is obvious. This completes the proof of

Lemma 1.

Proof of (4) as a sufficient condition for stability:

It has been shown in [I that under the preliminary conditions stated for

(4), the system of Fig. 1 is stable if
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det( I + GP6 ) 0 B E DR 6C [0, 1] A-1

where P 6  is defined in (A-i). Now, for square matrices G and L,

IGP 6  1 (P 6 IM( + G) + I ](I + G)P 6(A-12)

In view of Lemma 1, if condition (4) holds for a . 1, then, for

all 6e[0, 1] and BeDR

I JPj -IM( + W-11l 1k1P I-I + G)iljj

Since (I + G) and L are already assumed to be nonsingular, (A-13)

guarantees (A-il). This proves condition (4).

Appendix B

Proof of Theorem 1: b
For square matrices G and L,

I + GP = I + 6l -)G + 6GL (I + G)[ I + 6(1 + G- ) C(L -I) I (B-i)

The invertibility of I+GP for all 6d0O, 11 and s F-DR is guaranteed by
6R

1k1 1.G l~I < 1 s scD~
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This proves (3) as a sufficient condition for robust stability. This proof

is a trivial generalization of the proof of (1) (see [51). Now for WO1,

1) and s eD. the invertibility of I+GP is guaranteed by -*.'

I1+ G )-'1111L -III 1 ; sDa (B-3)
.1R

due to the 6 in the right-hand side of (B-i). At 6 1

{(I + GP6 (I + GL) , whose invertibility is given in the assumption. This

proves Theorem 1.

Avpendix C

Proof of Thegorem 2:

Theorem 2 can be proved by modifying a proof shown in Lehtomaki, et al

Ill. First, it can be shown by using the norm definition that

(P 1 < a if and only if

6 6 -( 6  - )( 6 - ) >0(C-i

where the superscript H denotes Hermitian transpose, ">0" denotes positive

*definiteness, and P 6 is given in (A-1). The variable a has been suppressed

* again for brevity. Expanding the left-hand side of (C-1) gives

a P 6 P 6 I 6 I4..

-6 2 a 2L L -(L -I)H(L -I) + 2(1 -6) (1 6 ) + 6(L + L)] (C-2)*J
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Nov, 'a(L 1  1) <. C 1 is equivalent to

LH + L > I1+ (1 a )LHL (C-3)

The right-hand side of (C-3) is Positive definite, therefore (L H+ L) is

positive definite, which makes the second term on the right-hand side of

(C-2) positive def inite for all 6 C (0, 1). Therefore,

cO(L -I) %< a guarantees that -T( 1) < a for all 6Sf[O, 1). This

fact and condition (10) lead to

aUP6  I)(I + G)/ ---- --- --- ------ - 1 (C-4)%

(A-12) and (C-4) guarantee that

detC I + GP Vi, 0 ;scDR 6c [0, 1) (C-5)
6R

Note that (C-5) is different from (A-11) in the interval of 6 .However,

for 6- 1. P6 =L(s). The nonsingularity of I+G(s)P6 Cs) is guaranteed by

(16). This proves Theorem 2.

Appendix D t
* Proof of Theorem 3:

We shall show that if the matrix norm is subordinate to some vector

norm, then for L diag[e I t 2'" ne

1Ll maxjC-i
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There is no loss of generality in assuming that ti It *1 for

i- 1, 2 ,**nl.Let x- (1, 0, 0,---, 0). Then ma1j

Therefore

[Ll ILl! (D-3)

4' Since the matrix norm is subordinate to some vector norm there exists a -

vector y satisfying___

ILyII J ILIJ-11Y11 (D-4)

But

I Lt ly lv. 2Y2, tu1 yu )IJI

t (D-5)

Let K signify a convex body that is symmetrical with respect to all axes

and centered at the origin of the complex space Cu. Since jLI/t, 4 1 for

i - 2,33 3 n * if such a convex body K contains y, it must also contain

*i ( /t0, t~y/1  y 1/t Therefore [10]

>1zi I Yjs /t kY I tnyn/tl)f (D-6) 2
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In view of (D-4), (D-5) and (D-6) we see

JIL11 It, I(D-7)

Combining (D-3) and (D-7) establishes (D-1). Now let E be def ined by

"5 (A-4), and P6 by (A-1). Since L~s) is diagonal, E(s) is also diagonal. Let

the iith element of E(s) be e.(s). Invoking (A-5), (A-9) and (D-1) gvs

for 6 E(O, 1)

I s- I 6 16-LEI 116 1 + (1 - 6)E I'1EI

6 e. e.
max--------------------max--------------(D-8)

i 1+ (1 - 6 )e. i a+ ag- )e.

I1li()- 
1n /is 0fo

where g=1/6 .However, since Ieii=l1Z~)- <ln /~s o

all i, we have e. (s) 0-1, and therefore

+ O le. > 1(D9

for all i. Therefore, for all 6EC(0, 1)

p 6 -' < max 1ei = hEll < a-< 1 (D-10)

It is obvious that (D-i0) holds for 6 0. Therefore,

I6 -6I

< L I 11-11(i + G)Ii1 < 1 (D-11)
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for 6C[0, 1). Note that the last two inequalities in (D-11) are different

from those of (A-13), and the intervals of 6 are also different. Nov

(D-11) again guarantees (C-5). Since at 6- 1, (1 + CP6 ) - (I + GL), vhose

nonsingularity is given in the assumption, the system of Fig. 1 is stable.

This proves Theorem 3.
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Am ~ ~ - ~ : ~~ ~ [0.1491 -.1 1 D- E 2 58

F(s) -[

0010 00 0s

00 0 0 0 -0. 0

0 0 0 0 0. -0.

-0 .03701 spiral mode

0.1889 * jl.051 dutch roll

A A(F )--3.25 roll convergence
0

-20.0 elevon actuator

-20.0 rudder actuator

0 0

0 0

- 0 0 [ 0 1 0 0 0 0j
0 00 0 0[ 0.07 1 0 0 0j

1 0

0 1

Table 1 Numerical Data for the System of Fig. 5
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(This paper was published in the Journal of Guidance, Control and Dynamics,

Volume 8, Number 4, July-August 1985, pages 520-525.)
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Time Domain Stability Robustness Measures for Linear Regulators k
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Abstract P-

In this paper, the aspect of 'Stability Robustness' of linear systems

is analyzed in the time domain. A bound on the perturbation of an asymptoticall)

stable linear system is obtained to maintain stability using Liapunov matrix

equation solution. The resulting bound is shown to be an improved upper

bound over the ones recently reported in the literature. The proposed L:

methodology is then extended to Linear Quadratic (LQ) and Linear Quadratic

Gaussian (LQG) Regulators. Examples given include comparison with an aircraft

control problem previously analyzed.

*Nlember AIAA
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Nomenclature

R~~~~ Real vector space o ieso

= Dirac delta

= Belongs to

I ~= Spectral radius of the matrix I

The largest of the modulus of the eigenvalues of[]

aN = Singular values of the matrix[

XLI~ Eigenvalues of the matrix[] .

PIS= Sy-mmetric part of a matrix[

mN =i Modulus matrix =Matrix with modulus entries

= For all i

Iii]~i= Euclidean norm of a matrix [

HHH5 ~~~ Spectral norm of a matrix [)=OaI*
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Introduction

eeV

In the present day applications of control systems theory and practice,

one of the fundamental challenges a control designer is faced with is to account

for and accommodate the inaccuracies in the mathematical models of physical

systems used for control design. It is the inevitable presence of these errors

J, .
in the model used for design that eventually limits the attainable performance ..

of the control system designs produced by either classical (frequency domain)

or modern (time domain) control theory. Thus, it is clear that 'robustness

is an extremely desirable (sometimes, necessary) feature of any proposed

feedback control de3ign, especially for large scale linear regulators.

For our present purposes, a 'robust' control design is that design

which behaves in an 'acceptable' fashion (i.e. satisfactorily meets the system

specifications) even in the presence of modeling errors. Since the system

specifications could be either in terms of stability and/or performance

(regulation, time response, etc.), we can conceive two types of robustness,

namely 'Stability Robustness' and 'Performance Robustness'. Limiting our

attention in this research to 'parameter errors' as the type of modeling errors

that may cause instability or performance degradation in the system, we formafly

define 'stability robustness' and 'performance robustness' as follows:

'Stability Robustness': Maintaining closed-loop system stability in the

presence of modeling errors, mainly parameter variations.

'Performance Robustness': Maintaining a satisfactory level of performance

in the presence of modeling errors, mainly parameter variations.

This paper addresses the aspect of 'Stability-Robustness' in multivariable

LQG regulators. Even though the aspect of 'Performance Robustness' (or

'regulation robustness', to be more precise for the case of regulators) is

equally important, it is known that 'Performance Robustness' studies assume

or require stability to start with. This paper, therefore, concentrates on
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the stability robustness aspect. The recent published literature on this

'Stability Robustness' analysis can be viewed from two perspectives, namely

i) frequency domain analysis and ii) time domain analysis. The analysis

in frequency domain is carried out using the singular value decomposition

- [1-41, where the nonsingularity of a matrix is the criterion in developing

the robustness conditions. Barrett [4] presents a useful summary and

compariosn of the different robustness tests are available with respect

- to their conservatism. Bounds are obtained by Kantor and Andres [5] in

frequency domain using eigenvalue and M matrix analysis. On the other

hand, the time domain stability robustness analysis is presented using

Liapunov Stability Analysis starting from Barnett and Storey [6], Bellman

[7], Desoer et al. [8] Davison [9], Ackermann [10], Franklin Ackermann

[11], Barmish et al [12], Eslami et al. [13] (in the context of robust

controller design). Despite the availability of considerable anaylsys

in the time domain stability conditions in the above references, explicit

bounds on the perturbation of a linear system to maintain stability have

been reported only recently by Patel, Toda, Sridhar [14] Patel and Toda

[15] and Lee [16]. In [15], bounds are given for 'highly structured

perturbations' as well as for 'weakly structured perturbations' (according ---

to the classification given by Barrett [4]), while Lee's condition [15]

treats 'weakly structured perturbations'. Highly structured perturbations

are those for which only a magnitude bound on individual elements of the

perturbation matrix is known for given model structure. Weakly structured

perturbations are those for which only a spectral norm bound for the error

is known.

In this paper, the analysis is carried out in the time domain ( in the

lines of Patel & Toda [15]). A new mathematical result is presented [17]

for the case of highly structured perturbations provides an improved upper
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bou.d over [15]. An aircraft control example is presented which illustrates

the 'optimism' of the proposed bound compared with the one provided by [15].?-

The analysis is then extended to the case of LQ (Linear Quadratic) and LQG

(Lirear Quadratic Gaussian) Regulators. The usefulness of the proposed .- %-

analysis in designing 'robust' controllers is discussed.

Stability Robustness Measures in Time Domain
for Linear State Space Models

In this section, we first present the recently available robustness

measures of Patel et al. [15]. Then a new robustness measures is presented

for structured perturbation and this measure is shown to be an improved

measure in the sense that it is less conservative than the result of [15

Robustness Measures Due to Patel and Toda:

In ref. [15], Patel and Toda consider the following state space

description of a dynamic system,

1(t) = A x(t) + E x(t) = (A + E) x(t) (1)

where x is the n dimensional state vector (R n), A is an nxn time invariant

asyvrptotically stable matrix and E is an nxn 'error' matrix. However, in a

practical situation, one doesn't exactly know the matrix E. One may only

have knowledge of the magnitude of the maximum deviation that can be c.pected

in the entries of A. In this case (highly structured perturbation), the

entries of E are such that

JE. I< C (2)
1) -

where c is the magnitude of the maximum deviation. "-
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For this situation, it is shown in [is), that the system of (1) is

2 stable if

-n -0 IN(3a)
max

or E jj < Ej P (3b)

* where P is the solution of the Lyapunov matrix equation

A TP +PA + 21 0 (1 is an nxn identity matrix). (4)

Now, in what follows, we present the main mathematical result (as a new

theorem [17]) which forms the basis for developing a condition for the stability

* of a perturbed matrix.

Main Result: Let F and E be two real matrices.

Lemma 1: If F is negative de~inite, then the matrix F + E is negative definite if

"{[E (F )J } < EFY
s S) s max s s

*Proof: Given in Appendix A.

he now apply the above result to get an upperbound for the perturbation

matrix F of system (1), assuming highly structured perturbation.

*Thcerm 1 he system matrix A + E of (1) is stable if

mIF < I (6a)

* ,shvre U is; an nxn noat rix %,hose en~tries are unity i.eX., U I for all i,n ni)

* .=l,.. n and P satisfies the Liapunov equation given by (4).

Pro.of: Given in Appendix B.
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Exampl e 1: We consider the same example as the one considered in Rcf [15].

* The nominal stable matrix is

(7)-31
A=A
All0

Applying the analysis of [151, and this paper, the following bounds

are obtained

Patel & Toda Yedavalli

Thus, the proposed robustness measure gives an improved upper bound.

For many other examples considered, it was seen that in general

In fact, the following theorem guarantees the same for a class of systems.

Theorem 2: The bound p > peip jj (9)

Proof: It can be seen that, for 1 = P

a ma(M~U_) < a (PU) < a (P) a (U) < a (P) n (10)mn _ max n - max max n - max

Thus, rax (LPIU )s ax (P)n (11)

Cymax[(IPIUn)s1 L ama[P] (12)

Incidentally, in example 1, it happens that lJP P. From the experience

with many other examples, it is conjectured that Ay is always greater than

or equal to ipp with no rest rictions.on P, and ef fort s are underwa' to

investigate the same. 3-150



Extension to Linear Regulators

We now extend the above analysis to the case of large scale Linear

regulators having parameter variations as the modeling error.

Let us consider a continuous linear time invariant system described by

i (t) = A x (t) + B u (t) + D w (t) ,x (0) =x O  (13a)

yt) =C x t) (13b)

z(t) = M x (t) + v (t) (13c)

where the state vector x is nxl, the control u is mxl, the external

disturbance w is qxl, the output y (the variables we wish to control)

is kxl and the measurement vector z is kxl. Accordingly, the matrix A

is of dimension nxn, B is nxm, D is nxq, C is kxn and M is £xn. The

initial condition x(O) is assumed to be a zero-mean, gaussian random

vector with variance X, i.e.

T
E[x(O) =0, E[x(0) x (0)] =X (14)

Similarily, the process noise w (t) and the measurement noise v (t) ..re

assumed to be zero-mean white noise processes with gaussian distributions

having constant convariances W and V respectively, i.e.

E[w(t)] = E[v(t)] = 0 (lS)

E w(t) [wT() vT(T) ] W 0

(16) -..

where p is a scalar greater than zero and V=p V

e e .--
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Let the above system be evaluated for any control u by the quadratic

performance index
1 t Tu x c R  _ ,

j=lim--E [cyT cT) Q y (T)+UT (T)p R U (T)] dT (17)Ct 0

i here scalar pC > 0 and Q, R are (kxk) and (mxm) symmetric, positive

definitive matrices, respectively.

*4"-".5.4

For the case of a deterministic system, the following modifications

in the system description are in order:

i) Dw = 0, v = 0

ii) the initial condition, x(O) = XXX = 0

and the index J of (20) reads

T TTJ= o[yc t) Q y (t) + u (t) pc R u(t)]dt ()
0

If the state x(t) of the stochastic system is estimated as a function

of the measurements we assume the state estimator to be of the follo,,ing

structure

x(t) = A x (t) + G z (t) (19)

where

z(t) = z(t) - M x(t)

is called the 'measurement residual'. For a 'manimum variance' requirement,

the estimator of (19) is the standard Kalman filter [18]. We refer to the

system presented in this section as the 'Basic System'.

Alsothe following assumptions are made with res'pect to the model

described by equations (13).
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Assumption 1: The matrix pairs [A , B] and [A, D] are completely

controllable and the pairs [A , C] and [A , M] are completely observable.

Case I: LQ Regulators:

For this case, the nominal closed loop system matrix is given by

ad AL =A +BG (20a)
where G R -1B K (20b)

-"and KA +ATK - KB Ro-IBTK C TQC= 0 (20c)

Let L-, AB be the maximum modulus perturbations in the system matrices A&B

respectively. Then the perturbed system matrix is

A = (A+AA) + (B+AB)G (21)
CLP

Design Observation 1: The perturbed LQ Regulator system is stable for all

perturbations in A&B (in the sense of (2)) if

I + &B IG. +-:.:-. 1t,,- tgl6I + ,-l g . - mGa [(I-PIU) ] (22a)

where P satisfies

A P + P A -2 1 (22b)
CL CL n

Note that IE I and Ii are functions of the control gain G.Case 2: LQG Regulators:

For this case the optimal control for nominal values of the parameters

is given by

u G1x R B Kx
So (23a)
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whereA

x = A x + B u + G(z -M x), x (0) 0 (23b)

= (A + B G - GM )x + z (23c)

e ~(2 3d)

and P and K satisfy the algebraic matrix Riccati equations

T 0 T CT
KA +A K- KB -B K +QC 0 (23e)

-T T T 0(23f)
PA + A P - PM - MP + DW D 0

*The nominal closed loop system is given by

x A BG x D 0 w

4..

LX J LG M A cJ LX L0 G _jLv (24a)

y C 0 x

u 0 G x (24b)

where A = A +BG -G M and the closed -loop system is asymptotically 0:

stable.

We are now interested in examining the stability robustness of the

closed-loop system in the presence of parameter variations alone.

Let LI, AB, UC, AM and AD be the maximum, modulus perturbations in the

system matrices, A, B, C, M and D respectively. Then the perturbed system
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matrix can be written asS.S -

ABA)GAJ (25)
ACLP

(Ga(M+LMf4 A~ c J

Design Observation 2: The perturbed LQG regulator system is stal o l

pertrbai~n inABC,M,',D,GF&G (in the sense of (2))if

0 (t1U) 5  (26)

where7 ;
A~ B

IGIAN+ IM+AM)HIAGI AAC

and P satisfies equation (22b) I'mL v~, a ~rI 4ck'.
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Discussion of the Design Observations:

Some discussion about the implications of these design observations is

now in order. First, it may be noted that the proposed stability conditions

are similar, conceptually, to the frequency domain results reported in Ref. TIP

[1 1 However, there are also some interesting differences between these -

two (frequency domain and time domain) versions. Some preliminary observations

are presented in the following sections. Secondly, these design observations

- are useful in many ways in both the analysis and synthesis of robust controllers.

These are discussed in later sections.

a) Comparison and Contrast Between Frequency Domain Analysis and the

Time Domain Analysis *

The main differences between the frequency domain treatment and the

time domain treatment are as follows:

i) In the frequency domain treatment the stability robustness condition

involves the calculation of singular values of a complex matrix at various

frequencies. In the stability conditions of time domain, no time dependence,
Singular

is present. Only the values of a real symmetric matrix are to be computed.

ii) In the case of frequency domain results, the perturbations are

mainly viewed in terms of 'gain' and 'phase' changes [ 191. In the P.

proposed time domain analysis the perturbations are viewed as 'system

parameter variations' with constant, fixed gains. It may be noted that in

the time domain treatment the nominally stable closed-loop matrix and the

perturbed closed-loop matrix are both functions of the constant controller -.--.

gains.



iii) In the frequency domain treatment, considering an uncertainity,

for example, as an additive perturbationseveral stability robustness

conditions can be written which do not imply each other for practical

systems (20]. In the present time domain approach such difficulty is

not present as the perturbations are modelled as additive perturbations

and yield only one robustness test.

These are some of the preliminary observations made with respect to

the frequency domain and time domain approaches for 'stability robustness'.

Evidently further in-roads have to be made in the investigation of this

relationship and this is suggested as a future-research topic. In the

following section, the usefulness of the proposed design observations is

briefly discussed.

b) Usefulness of the Design Observations - -

The proposed design observations are helpful in many ways.

Given the perturbations 6A, LB, and AM one may determine the controller

" gains to achieve stability robustness.

This type of 'Perturbation Bound Analysis' can be used to

compare different models and control design schemes from a stability robustness

point of view, as well as in 'Robust Controller Design'.

-Finally these tests can find applications in spillover reduction

paoblems and sensor/actuator location problems.

Application to an Aircraft Control Problem

We now consider two same application example as the one considered by

Patel , Toda & Sridhar in [141. For completeness sake, we briefly reproduce -

here the mathematical model of [14 ].

p
1

°.'.

.:..-:-
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In [14], the system chosen is the flare control of the Augmentor Wing

Jet STOL Research Aircraft (AWJSRA). The purpose of the flare control is

to make a smooth transition from an initial steep flight path angle of -7.5*

on the glide slope at an altitude of approximately 65 ft to a final smaller -.,.

flight path angle (-l*) more appropriate for touchdow.n.

The equations for the longitudinal dynamics of the AWJSRA at an

airspeed of 110 ft/s and flight path angle of -1" are given by

A A x Bu (26a)

where

x =[6v 6y 60 6q 6h]T
T

u = [ 6e 6n]

v= change in airspeed, ft/s

6y change in flight path angle, deg

66 = change in pitch angle, deg

6q = change in pitch rate, deg/s

6h deviation from nominal altitude, ft

6e = change in elevator deflection, deg

6n = change in nozzle angle, deg

-0.0547 -0.298 -0.2639 -0.0031 0.0
0.16 -0.4712 0.4661 0.0437 0.01

A = 0.0 0.0 0.0 1.0 0.0 (28b)
0.1752 0.1236 -0.1236 -1.3 0.01
-0.0174 1.92 0.0 0.0 0.0]

-0.00315 -0.0943
0.0408 0.0224

B 0.0 0.0 (28c)
-1.1200 -0.08
0.0 0.0::.. .

The open loop poles of the system are at 0.0, -0.0105 ± jO.2737,

-0.6757 and -1.129.
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The Performance index considered is Of.4'.

00it R= i ag Q x u Ru) dt (29a)I5 " (2-b)

with R= Diag [16, o.5] and Q = qI .  (29b) i

Applying the analysis of[15] and this paper the bounds 1y and p P

and their variation with q are summarized in Table 1 and Fig. 1. Here

S1Jy n'y

and

lip -n 11 p

Clearly it is seen that 1Y is greater than pp for the values of q

Iconsidered and the 'optimism' of over ppincreases as q is increased.

Conclusions

In this paper, stability robustness analysis is carried out in the time

domain, which promises to be a viable supplement and/or alternative to the

frequency domain approach, particularly for Linear State Space models.

An improved upper bound on the perturbation of an asymptotically stable

linear system is obtained which is easy to determine numerically. Extension

to LQG regulators is discussed which offers extensive scope for further

research. Some advantages of this time domain approach are i) tractability

of problem formulation ii) explicit consideration of model error information

and iii) computational simplicity, among others. Further research is being

carried out on obtaining similar improved robustness measures for 'weakly

N-
structured perturbations' and for different types of modeling errors such

as 'truncated modes' and 'nonlinearities'as well as :the application of this

kind Of"perturbation Bound Analysis" in designing 'robust' control systems.
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-. 1r I.-' FW.' TT I. go.'. W. - J -- - "~

0.1 M.005 0.0061

0.2S 0.0082 0.0093

0.5 0.0107 0.0125

1.0 0.0137 0.0164

5 0.0213 0.027:

10 0.0240 0.0322

s0 0.0305 0.0420

10 2  0.0323 0.0451
100.0364 0.0530

Table 1

Variation of jiand pwith q

O.N;.

0.05

0.04 ''J

0.03

C 0.02

q

Plot of pi vs q
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Appendix A

* Proof of Lemma 1:

Let c[(E 5 (F) ) <I 1

(E (F)<
max

Ix (E(F )- )SI <1

1 + X.{[E )(F ~ > 0

1~X I + (E (F ~ 1 > 0

[~)I + E (F) is poii>0 efnt

s S S

A~ and B~are positive definite, AB~has positive

real eigenvalues. (Ref. [21, 6])

and

2) If Ais negative definite, -A-,is positive

definite and hence -F is positive definite
S

(Ref. [6)).

*-(F S+ E ) has positive, real eigenvalues

[because [I + E (F ) ][-F] -( + E)

-~-(F + E )is positive definite (because -(F + E )is symmetric too)
5 S 5 5

-~(F + E ) is negative definite
- S S R

(F+E)
s is negative definite

-~(F+E) is negative definite

-~(F+E) has negative real part eigenvalues

* -~ (F+E) is stable.
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Appendix B

Proof of Theorem 1: Consider = (A+E) x(t) (Bl)

whe re

Eijl ma (scalar) and A- Un

where Un is an nxn matrix with

U = I for all i, j=I,2,. ..n.
i~j T

Let V(x) =x P x > 0 be the Liapunov function for the system in (BI)

where P is the symmetric positive definite solution of

ATP+PA -2 1 n (B2)

Then

V~)= x2Tx+xT(ETP + PE)x (B 3)

Now

Let < maxOtPI Unds

-~ama,(IPjA)s <1

arnax(PE)s <I

Gmax{-(PE)s} <1

-Omax{Ps(I) s<1

{,fn + (f )s} is negative definite (by virtue of Lemma 1)

{-21n + ETP+PE} is negative definite

-~V(x) of (B3) is < 0 for all x*.*

-~(A+E) of (01) is stable.
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4 IrFiiC SINCULA. VALUES TO DESIGN A COOP MULTIVARIATY CTRO LOOP

Nthat we have seen some of the tools available toaayea

multivciriable control system, It Is time to turn our attention to

svntlbesis. Before we can attempt to design a good controller, we must

define what constitutes a good multivariable control loop. First, since

it sbould be more comfortable, we will discuss the STSO control loop.

Most of this section Is taken directly from Reference 14-11. Then, with

thc v~elp of singular values and matrix" theory, we will extend these

Ideap to the multivariable case.

4.1 Single-Input Single-Output Control Loops

First, let's look at a generic feedback system, as shown In Fig

D(S(S

t 

+ +

Fig 4.1 A Generic SISO Control Svstem

wherec

r(ii) -input command reference signal

e(s) - error signpl

u(s) - control input signal

(1(s) - (o'utput) disturbance signal

-output signal

n (s) -sensor noise signal
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g~)-plant transfer function (given)

k~) compensator transfer function (to be designed)

Now we can derive some relationships between the different variales

yIs) = (s gs1\~e

e(s) =r(s) - rn(s) + v(s)l (4.2)

Plugging (4.?) into (4.1) and rearranging yields

y(s) -d(s) + g(s)k(s)fr(s) -n(s) - y(s))

=d(s) + g(s)k(s)r(s) -g(s)k(s)n(s) - g(s)k(s)y(s) (4.3)

or

fl + g(s)k(s)] y(s) = (s)k(s)r(s) + d(s) -g(s)lr(s)n(s) (4.4)

Dividing both sides of (4.4) by [I + g(s)k(sfl yields

g(s)k(s)1
Y(S) Fr(s) -n(s)] + d(s) (4.5)

I + g(s)k(s) 1+ ROS)k)

Equation (4.5) relates how the commands, disturbances, and sensor noise

each affect the output. To provide more common term4inology, II7
g(s)k(s) - open-loop (loop) transfer function

I + g(s)k(s) -return difference transfer function

g (s)k(s).
- closed-loop transfer filnction

I + g (s)k (S)

I + ~s~ks) -sensitivity transfer function

We will now procede to give a qualitative description of what corsti-

tutes a "good" loop transfer function.

4.1.1 Closed-Loop Stability

First, the closed-loop transfer function must be stable* that

Is, the roots of I + g(s)k(s) 0) must all lie In the left-hall s-plane.

Without closed-loop stability, a discussion of performance is
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meaningless. It is critically Important to realize that the compensator

k*(s) is actually designed to stabilize a nominal open-loop plant,

g*(s). Thus. trhe nominal closed-loop transfer function Is

p,*(s)k*(s)
(4.6)

= I + g*(s)k*(s)

7Th-is Is what we design to be stable, and will learn techniques to do so

later. Unfortunately, the true plant Is different from the nominal

plant duic to unavoidable modelling errors, denoted by Sg(s). Thus, the

true plant may be represented by

g(s) =*()+ 6g(s) (4.7)

ard the true closed-loop transfer function Is %

[g,*(s) + 5~)]*s
g (s) =(4. P)

CL 1 + [p*(s) + 6g(s)1k*(s)

This; transfer function must also be stable, and knowledge of 6g(s)

should influence the design of k*(s). In the following discussion, we

til1 assume the actual clcsed-loop system of (4.8) is stable.

* - 1.1.2 Commandi Following Performance
Aso- -

Tvpically, we desire the output y(t) to follow the reference input

r( Ll osely. This rpy be represented in the frequency domain by

v (s) =r (s) for se S (4.9)
r

wbere S denotes the set of frequencies where r(s) hes most of Its
r

fremiiencv content. For common Inputs, such as steps, ramps, and

s-inusii:dR, most of their energy lies in the low frequency region.

Mo look at comimand following performance, we let n(s) d(s) 0. W

Then, equation (.)becomes

$:(s;)k (s)
v~c ~-r(s) (4.10)

I + p(G-k (s)

4-3
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It Is obvious that If we require

1+ g(s)k(s) "large" for se Sr (4.11)

which in turn implies

g(s)k(s) "large" for se S .12)
-wr

then (4.9) will be satisfied. Thus, for good command following, the

return difference and hence the loop transfer function should be large

for the range of reference input signal frequencies. .. %

4.1.3 Disturbance Rejection

It is typically desired to have the closed-loop system reiect

disturbances. To see what is required for this, It is ep's'er If we

examine the error signal, e(s). To simplify the algebra, let n(s = 0, -

and examine

e(s) = r(s) - Y(s) (4.13)

Substituting (4.1) into (4.13) yields

e(s) r(s) - fd(s) + g(s)k(s)e(s)J

=r(s) - d(s) -g(s)k(s)e(s) (4.14)

or

[1+ g(s)k(s)le(s) =r(s) -d(s) (4. 15)

Now, assuming that the reference command signal r(s) =0 so that the

desired output y(s) also equals zero, dividing both F'ides of (4.15) by

1 + g(s)k(s) yields

e(s) =-d(s) (4. 16)%.
1 + g(s)k(s)

It is immediately obvious from the above that cdisturbsnee reiecticmT Is
4. 4. %

accomplished if

I + Fg(s)k(s) "large" for se S. 6.7

which ImplieF
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p(s) k(s) lae"for qcS (.8

Therefore, for gcoe diturbance rejection, the loop transfer function

must he large at the frequencies (denoted by d)where the disturbances

have their mnajor energy content.

4.1.4 Sensitivity of Command Following to Mfodelling Errors

First, let'F look at how modelling errors affect open-loop command

following. Let g*(s) denote the nominal plant, and V*(s) the nominal

output. Then

* .*7(s) = *(s)r(s) (4.19)

Now, suppose the actual plant is related to the nominal by

P(S) - *( S) + 6 g(s) (4.20)

Then the actual output is NW

v(s) g(s)r(s)

rg*(s) + 6 P, W r (s)

=g* (s) r(s) + 6g (S) r(s)

=y*(s) + 6g(s)r(s) (4.21)

Jf we define 6y(s), the deviation of the actual output from the nominal

due to modelling errors, by

6 v(a) 6 (s) r(s) (4.22)

and .vide (4.22) bv' (4.19) we get

6v~s = 6~s)(4.23)

Y *(s) g*(s)

Fruation (4.23) shows that In open-loop command following the deviation

6y(O' of the output is proportional to the modelling error 6g(s). This

nav be unacceptable if the modelling error Is appreciable.

11'ov let's ex~amine closed-loop sensitivity. IUsing the previous

not at ion

4-5
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g*(s)k(s) ; ..
y* (s) = r (s) (4.24)

1 + g*(s)k(s)

Note that the asterisk Is dropped from k(s) since the designed Is the

actual. Using (4.20) - (4.22),

-g*(s) + 6g(s)lk(s)
y(s) - y*(s) + 6y(s) = r(s) (4.?5)

I + [g*(s) + 6g(s)lk(s)

We now wish to find the ratio to compare with (4.23). Front

Appendix 4A, this is given by

6y(s) 1 ag(s)
(4.26)

y*(s) 1 + g(s)k(s) g*(s)

It is clear to see that if the loop transfer function, and hence the

return difference, is large, then a significant percentage error in-. -

modelling the plant would result in a small percentage error in the

output. Thus, In any frequency region where loop gains are high,

command following is insensitive to modelling errors under feedback.

All of the above properties of feedback systems have shown that

high loop gains are desirable. First, since physical systems must have

more poles than zeros, g(s) eventually approaches zero and thus l.gh

loop gains are not achievable at high frequencies (unless k(s) is verv

large there). More importantly, there are limitations on performance

from several factors which make high loop gains at high frequencies

undesirable. These factors will now be discussed.

4.1.5 Stability Robustness with Unmodelled Dynamics

In almost all real systems, dynamics at high frequencies are not !.*

well known. Furthermore, to limit the size of the plant to a tract.ble

level, many times these dynamics are purposely ignored. Unfortunately,

injecting high amounts of control energy into these frequenclev may

4-6
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drive the poorly mcdelled or neglected dynamics unstable. Therefore,

hig~h loo-p gains at high frequencies may destroy the stability assumption

we made In our previous~ development, and thus the loop transfer function

and return difference must he "small" at high frequencies.

li.1.6 Sensor Noise Response

Let's look at our equation for the output again.

y(s) rr(s) -n(s)l + d(s) (4.5)

I + g(s)k(s) I + g(sW)ks

Pie bare already concluded that g(s)k(s) should he larpe at frequencies

where r(s) has Its energy, typically low frequencies. If n(s) also has -

significant energy content at low frequencies, it Is obvious that these

2 noises will be passed to the output, thus creating a serious conflict in

* obiectives. Fortunatelv, sensor noise is typically a high frequency

phenomenon, and thus it i& desirable to make g(s)k(s) small (see

pequation (4.5) above) to attenuate its affect. Thus, the sensor noise

re-ction reanirement Is

g(s)k(s) "small" for se S n(4.27)

whert: S denotes the frequencies where the noise has itt- major energy

cortent *

4.1.7 Bode Diagram Tnterpretation

1,11 of the above requirements may be represented graphically

through i-he use of a B~ode mognitude diagram. Pere we assume that

comriand following and disturbance rpeCtion are to bp accomplished at

low Frectencies while sensor noise and unmodelled dvnav'ics dominate at

high trequencies. These requirements impose restrictions on the siz.e of

g(~)I(s), and are shown as "barriers" on Fig 4.2. The design prollem

then becomes:

4-7
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Given a plant transfer function g(s), find a compensator k(s) which

yields a stable closed-loop system and whose ioop transfer function has

the properties shown In Fig 4.2.

dB

g( jw)k(jw)

Frequencies where sensor noise

and unmodelled high frequency

* Frequencies for good command

- following, disturbance rejection,

and sensitivity reduction

Fig 4.2 Bode Magnitude Plot of a "Gooce" Loop Trarsfer Function

* 4.2 Multivariable ControlLop

*Now we need to extend the SISO Ideas just presented to molt ivari-

5,able systems, and try to quantify them as well. once again, let's look

at a generic multivariable feedback system, as shown In Fig 4.3.

4-8
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> K~s) G (s)

Fig 4.3 A Generic MIMO Control System

All of the variables have the same definitions as befor2, except here the

signals are vectors of signals and the transfer functions are transfer

function matrices. Henceforth, the underbars will be dropped. The input

and output vectors may not be the same dimension, in which case K(s) and

C(s) are not square matrices. We will define their s17eS more specifically

latpr.

Again, we derive some of the relationships between the variables

e(s) = r(s) - n(s) -y(s) (4.28)

Y(s) d(s) + G(s)K(s)e(s) (4.?9)

T) Output equation: Substituting (4.28) into (4.29) we get

v(s) =d(s) + C(s,)K(s)r(s) - (s)K(s)n(s) -G(s)K(s)y(s) (4.30)

F T + G(s)K(s)jy(s) =d(s) + C(s)K(s)fr(s) -n(s)1 (4.31)

Prersultipiving both sides of (4.31) by fT + G(s)K(s)] 1 we get an expression

for the output, giver tby

v(F) = [I G(s)X(s)1 G,(s)Y(s~fr(s) -n(s)l + fT + G(s)K(s)1 1 d(s) (4.32)

ITT) Frror equation: To examine the effect of noise on the error signal, we

reec to eliminate n(s) from (4.28). Wbat we want to do Is to minimize the

effect of n(s) upon the difference

e (s) =r(s) -Y(F) (4.33)
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Representing r(s) in (4.33) by [I + G's)K(s)1 rI + (;(s)v~'s)1r(-) and

substituting (4.32) into (4.33), we get rsuppressing the functional

dependence on s in the Intermediate steps]

e (s) = I CK1- rI+ CKr- FTr~ + CJ Kr +I + C 1 CJ( -T + ry1ld

+ IT + GKI GKn - 4 (Cl 1d

fI + G(s)K(s)1 [r(s) -d(s)] + r1 + G,(s)K(s)1 CW(sK(s)n(s) (4.34)

II) Sensitivity equation: In order to examine the effects of open-loop

plant variations on the closed-loop output, we neee to derive an equation

* for closed-loop sensitivity. First we let d(s) n(s) =0, and let fl*(s)

* denote the nominal plant and y*(s) denote the nominal Dutput to a command

r(s). Then

y*(s) IT + G*(s)K(s)J1 G*(s)K(s)r(s) (4.35)

Suppose the actual plant is given by

(()= G*(s) + 60(s) (h~.36)

which results in a change of the output

y (s) =* y(s) + 6 y(s)

=IT + {G*(s) + 6G(s)1K(s)] {C*(s) + (G(s)}X(s)r(s) (4a.37)

*After some fancy linear algebra, similar to that In Appendix 4A, we get the

* following resiilt

6 y(s) =(I + C(s)K(S)l cC(s)[G*(s)1 y*(s) (4.3F)

Finally, defining some terminology

G(s)K(s) - loop transfer matrix

I + G(s)Y(s) -return difference matrix

IT + C(s)K(s)l -Inverse return difference matrix

IT + G(s)K(s)j 1 0(s)K(s) -closed-loop, tranisfer matrix

4-10
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4.2.1 Singular Values as a Measure of Size of a M atrix

N~ext we will use the relationships derived above to examine what Is

required of the loop transfer matrix in order to meet our performance

A requirements. To quartify these requirements, we first need a measure of

the "s4-e" of a inatrir. Tn tne SISO case, this is not a problem - size is

simp1jy the ragnituee o' the complex nurmher vou're interested In. For a

imaitrix, there Is no such rlear-cut measure of size. Figenvalues can be

shown to be poor ireasures cf size. A much 1h.etter measure of size is the

spect-al norm, also known as a singular value. These are defined In detail

in Chapter 2,and Are 0giveni by

()=fX (A A)i!/ (4.39)

A*A Is Positive senidefinite and liermitian, and therefore its eigenvalues

Are real and non-negative. Therefore, singular values are all real and

non-negative. The smallest singular value, called the minimum singular

value, Is denoted by 21.). The largest, called the maximum singular value,

is denoted J v V-.). C(A) gives a measure of how much attenuation the

fun~ction A produces on a given signal;la(A) a measure of how much

amplification. If 2(A) =0, the matrix is singular (doeF not have full

rank). Therefore, if 2(A Is "large", then the matrix is said to be large.

(:onverse''v, if j(A) is "small", then A Is said to be small. Of course,

"small" And "large" are relative terms (the same problem exists In the

scalar case also).

Peal'7.( that A ahove Is not necessarily a constant antrix. For our

appllca' 4 ons, A is i transfer fuinction matrixr of some type, which Is a

function of frequency. This should not be confusing - In the SISO case,

magnitude Is also a fuinction of frequencv. The singular values may be

r plotten apainst frecuency, thus creating the multivariahle extension of a

IBotd plot. These will he called singular value plots.
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4.2.2 Multivariable Performance Properties

Now we will use singular values to extend the perforrmance requirerents

in Section 4.1 to the multivariable case. Tr order to quantify thef-

relationships, wc will replace 9 by 1w so that we are working in tV..

frequency domain (,Ypllcirly.

For good command following (let d(jw) = n(iw) - ti), we want

y(jw) r(iw) V w<w (4. Z(')

where w0 is the active frequency range of the systeT,,. From eCuatior ( ', . -

this means we want

IT + C(iw)V(iw)l C(4w)K(iw) T w<w n  (4./.

Looking at (4.33), we also need

e ~W)  , w< w0  (4./ °

so that, from (4.34),

[I + G(jw)v(w)1 0 < w (4.43'-

The above equation says that we want the inverse retur, difference t, tic

small, which may be stated as

[{+ C(lw)K(iw)}-I "small" ¥ w< (1.44)

Using the singular value Identity

d(A) = 1/ 2A 1 ) '4.45

this may be rewritten as

qrT + C(jw)K(jw)i "large" @ w< w,

Rather then use "large", let's define p(w) as a large, pofitive f,c('lon i ""

frequency, so that (4.46) becomes

o_ T + C(Jw)K(jw)I >p(w) V w<,; (4. 47)

Using the singular volue inecualltv

_ [C(jw)F(iw) 1 - I < aIT -I- C(iw)K((jw) 1 < _ fC(iw)i(w) 1 + I <'L.4P.

we may conclude that (4.47) is satisfled If L

4-1 2
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grCOiW)KOW)l "large" V w<w 0  (4.49)

and therefore Gj(iw)Y(.w)1 approximates GtT + G(jw)Y(iw)]. This last

fact also guarantees that (4.41) is satisfied. This all becomes a

restaterent of the fact that high loop gains yield good command following.

rrom (4.32) or (4.34) we can see that for good disturbance rejection,

1l + ((IW)Yiwfl C) -V w <w (4.50)

which again leads to equation (4.47). Looking at (4.38), it is clear that

larpe loop gains will also reduce sensitivity to low frequency modelling

errc'.s. There-)re, high loop gains also reject disturbances and minimize

sen Iivi ty

Figh loop gain a~t all frequencies is not a good design objective,

however (good thing -for real systems, It's impossible anyway). Assuming

no disturbances and a zero reference command, (4.34) gives the system error

* response, as

r-, (w) FT1 + C.(jw)K(iw)1 G(jw)K(jw)n(jw) (4.51)

If C,(jw)YK(Jw) is large, by (4.48) It roughly equals fl + C(jw)K(jw)], and

(4..s1) becomes

e 4) lln(jw) (4.52)

Thus, If r(jw)K(.jw) is large where the noise has mrost of Its energy, the

rcise will pass through into the error and thus into the output. Therefore,

-1
to MnirIize the effect of sensor noise, fT + C(iw)K(jw)l C(.Jw)K(,jw) should

be small at the noise frequencies, or

6 FOT + C(iw)Y(iw)} G(i1w)K(Jw)J << 1 (4. 53)

17 lrgf the singular value Inequality

'/hj3\ will be satisfied 1 A
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U-1{T + G(iw)YK(iw)1 -1 JIG[C(w)K(Jwf I < 4.55)

and by (4.45), this may be rewritten

r3 FCOw)y OW) I
- - - - - - - - - << I (4.56)
arFT + C(1w)K(4w)1

N.This inequality will be satisfied if jorC(jw)K(iw)J «1<I, so that smal I loop

gain will tend to minimize the effects of sensor noise.

Another argument against high loop gains at high frequency mayV hi wade by

examining the expression for control activ'itv,

u~jw) = K(liw)e(iw) (4.57)

where e(jw) may be found from (4.28) and. (4.29) to 1he

e~jw) =r(jw) - n(.iw) -v~jw)

-r~i1) -n(jw) -d(jw) - G(Jw)K(jw)e(jw) (4.5R)

or

rT + G(Jw)K~jw) le(1w) =r~jw) -n~jw) -d(iw) (ii.,9

so that

e~jw) =fl + G(Jw)K(i1w)1 riw) -n(lw) -d(1w~ (4. 60)

Substituting (4.60) into (4.57) yields

u(jw) =K~lw)fI + G(jw)K(4w)1- fr(jw) -n(jw) -d~iw)l (4.61)

For G(jw)K,(jw) large, I + C(.iw)K(.iw) is appro)-imatel- equal to r( l)YK(jw), an'

(4.61) becomes

u~jw) K(jw)[G(iw)K(jw)1- [r(iw) -n~jw) -d(~w)1

-1 -
=K (jw)K (jw)G, (jw) fr(iw) - n (iw) -d (is) ]

=G(iw)rr(jw) -n(jw) -d~iw)l (4.62)

where we have assumed C(.Jw) and K(jw) to be square ;int invertible for conv.e-

*nience. Beyond the bandwidth of C(.iw) (where it rolls off), C (1w) P'rows

*large and therefore the control activity u~iw) does Plso. T'his Is

4 4-14



uranceptahle, and provides another reason why high loop gains at high frequency

must be avoided.

Te trade-offs discussed above, high loop gain at low frequency but not ot

high froquencv, are not difficult by themselves. What compounds the problem 4

fl designing the transitien between the regions

2) accounting for the destabilizing effects of (high-frequency) uncer-

taintles.

These w,11 he discussed next.

4.2.3 Modelling Uncertainty

The models we use for designing control systems are just that - models of

reality. Inherent in all models are errors due to our inability to accurately

represent the re,-1 world, such as nonlinearities, truncated modes, neglected

dynamics, parameter variations, etc. The best we can do is try to estimate

these errors and design systems that will remain stable in spite of them. One

Possibe representation of the modelling error is called additive unstructured

uncertainty, given by

G'(w) - C(w) * AC(jw) (4.63)

where

r[ ANA(w) < Z Vw W> 0 (4.64)-'""

Pere, G'(jw) is the true p'ant, C(jw) the model of the plant, AG(jw) the error,

and Z (w) is a positive scalar function. The error i- called unstructureda

hecaus(e all we claim te know about it 4s that it is bounded by the function

"-* a (w). "herefore, this representation confines G'(iw) t,' n neighborhood of%'" a

C(,v) ,ith magnitude k (w).

pr.ther representation frr uncertainty is called (output) multiplicative

unstructured uncertaintv;, V.iven by

4-15
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G'(jw) =fT + TL(Jw)lCdlw) (.5

where

[rl'(jw) I < X. m () V~ w > V (4.66)

llere, L(.iw) is the uncertainty and P~ M () Is a positive scalar function that

bounds the maximum singular value of L(jw). ThIs representation confinjes

G'(jw) to a normalized neighborhood of C(lw), and has An advantage oAer the

additive form in that it applies to G(.iw)K(jw) as well as (i(jw). Fur this

reason, we will look primarily at the multiplicatIve form.

The better we represent uncertainty, the better our overall desirn will

be. Therefore, it is important to use the best model available for diffeient

types of uncertainty. Usually, low frequency errors (such as parameter

variations) are best miodelled by highly structured forms of uncertainty. There

are always high frequency errors remaining, however, which cannot he covered

this way. These are typically the critical destabilizing errors, arW the

unstructured uncertainties model these weil. Therefore, we will. focuF our

attention on uncertainties represented by (4.65) and (4.66).

One further assumption we will make is that the number of unstable modes

of ((WO is the same as in G(jw). These modes need not be Identical, which

does allow L.(jw) to be an unstable operator. Also, we assume G'(jw) rerlains a

strictly proper, finite-dimensional linear time-invariant transfer function.

These requirements make the development easier - In References f4.21 and f4.31

more general perturbations are covered, but will not be discuissed here.

Given all of these assumptions, the bounding functions 9, (w) commcwlv are small

at low frequencies and grow to unity and above at hiph 'Frequencies. This ir

shown in Fig 4.4.

4-16
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Flp 4.4 Typical Behavior of Multiplicative Perturbations

Tt Is important to note that constructing these uncertainty bounds is not

trivial. At present, It is an ad hoc procedure based on reasonable estimates.

The bcunt' issumes a worst case uncertainty magnitude applicable to all

channels. Tf more is known about the levels in various channels, it may be %<

necess.-ry to scale the input-output variahles or apply frequency-dependent

transformations to C(1w) so that 9 T (w) becomes more uniformly tight. More on

ti'is naw: he? found In Ref r4-31 and Chapter 5. Here, these scale factors and/or

transformations are assumed to he part of the nominal mo-del G(iv).

A.-'4 Design in the Face of Uncertainties

Now we need to put our stability and performance rpatilrements together and

make sure we satisfv them In the face of the uncertainties we have assumed.

4-17



Once we have a design model O(iw) ard accept uncertainties in the forrm of

(4.65) and (4.66), we must find a compensator l'(jw) such that

1') The nominal feedback system, C(Jw)K(iW)[T + C(iw)K(lw)l '-

stable (note that [I + CK] OK = GXMT + CK(1

2) The perturbed system, C' (iw)K(jwHIl + (.' (jw)K( w)l ~,is stable

for all ('(jw) given by (4.65) and (4.66)

3) Performance objectives for all G'(iw) are satisfied

Requirement 1) is just the standard closed-loop stability requirement,

which is completely solved by using the Nyquist stability criteria, or In the

MTMO case, its multivariable generalization [encirclement count ot (-if map

det[I + G(jw)K(lw)l, evaluated on the Nyquist fl-contour, he equal tr the

negative number of unstable open-loop modes of G(iw)Y(iwfl. More dersils or,

this criteria may be found In Chapter 2 of these notes.

Requirement 2) is a hit more complicated. Tt miay be satisfied bv ;1

similar requirement on fT + C'(Jw)K(jw)l. Since we assumed r'(jiw) lies the

same number of unstable modes as G(jw), the NvquIst criteria requires that the

number of encirclements of detfi + G'(1w)KUiw~l remains unchanged for Pll

COOjw. Checking this would be ridiculous, as there are an infInite number of

Ct (Jw), and we therefore need a better way. The above requirement i-q aE'ured

If det[l + G'(Jw)K(iw)1 remains nonzero as r(jw) iF, warped continuously toward

C'(Jw). Requiring the minimum singular value of a ftinct ion to be groater than

* zero assures a nonzero determinant, so that this requirement translates Into

0 < af I + I1 +c L.(lw)lGC(iw)K(jw) I 0 E I , >' 0 (4.67)

and for all T.(iw) satisfying (4.66). Thec_ varying from zero to one gives us

*the warping from G(iw) to C'(jw). Expanding (4.67) gives

0 < [Il + G(4w')K(iw) + CTI(lw)G(JW)X(j)(0 e 1 (t.8
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.ow, factoring fl(w)Vijw) out to the right yields

r< ir{ + frciw)y(!;w)1 + cL(jl)I(jw)K(iw)l V 0 4 (4.69)

wbere w#- i~ssu~me 1((wF(:~ eyists. Using the reain YA1'. A a 113i,

(4.69) is Pa isfie reIt o ar B1 a

0 c + (C(iw)Y j) :1(W fC(4w)K(1w) 1 04 41 (.0

is Patisfied. Since f(1w)Y(iw)1 exists, gAG(iw)K(1w)' A 0, and we divide It

out of (4.70) to get Nb

1l G 4 fP~jW)YK-W)} + Lj(j~j0 u4.1

V W 0

Ulsing the. fact that

a(A)> ff(E) a(A + F.) > 0 (4.72)

from Chapter 2 of these ores, Pnd letting A T + [C(jw)1((jw)] and

=61. w),we can see tha r

G + f (lw)K(.lwMl 1> J1cT.(jw) 1 V 0 4 c 4 1 (4.73)

( L(jw)
Implie - what we want. That is, if we satisfy (4.73), we nre guaranteed to

saticf% (4.711), which Is guait-nteed to satisfy (4.f-7). This form Is still

Inconrvenient. First, realize that 5FeLjwfl = £YJL(iw)l. 'because c is a

conlstanft posItiv- scalar. Next, recall that 2fA] 1/-fA1 1 Therefore,

(4.71 becoines

+ 1 1 _ ~ (jw)]

Using the identity

I T + (.) tT+GKI (CF) I =CKfI +t CY' (4.75)

(4.74) rnav hp rewrittrn , (after crc'ss-mutlpl-,Arp)
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: 0L (jw) 1>_j [G(jw)K(jw) (T + C(jw)K(jw) I-1 0o 1 (4. 76)

L(jw)

Now, if we rewrite (4.66) as

S< x (w) ~ Jw)O 16.77)

, L (Jw)1 %

or

< al 01) V w 0 (4.78R'

S we can easily see that by satisfying

-> Uj[Gjw)K(iw){T + C(iw)K(jw))-1 0 c c (1.79)
e 9 (w)

we will satisfy (4.76). Examining (4.79), we see that C 1 would f- et worst

case, since that value makes the left-hand side smallest. Therefort', if we

* satisfy

dfjwKw{ + G(jw)K(jw)lF'I < -V w~ (' (4.80)
t(w)

we will always satisfy (4.79). This is the most convenient formr of (4.67) tn

use.

Remember that (4.80) is the condition for "atir'ying Requirement 2) t

Is not a conservative requirement If all uncertaintiefs given by (6.6c')-(4.66)-.

are to be guarded against. Tt does, however, lmpno hard i mits on l

permissible loop gains. Also, upon examination, we can see that (14.P0) Is P

generalization of one of our familiar SISO requitrements. For large

uncertainties, Z (w) ,(4.80) becomes

~I<(-----1wV < >'w O, Z (w) >> I181

which says that small loop gains are required whenever nnstruct-ured

uncertainties are large.
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Finally, Requirement 3), the performance requirement, may he stated

mathemntically by rewriting (4.47) using G'(Jw) instead of C(jw), so that

p(w)4 _ [I 4 {I + 1,(Jw)}G(jw)K(jw)] - w; 0, L(jw) (4.82)

Bv the proof in Apperdi, 4P, this condition is satisfied if 0 .d

p(w) V wO -

-- (w- -- -<C w)K(iw)i Zm(w)<l (4.83)
t 2(w ) [G(jw)K(jw)]>:-1 . ,

In words, this says that performance objectives can be met in the face of

unstructured uncertainties If the nominal loop gains are made sufficiently

large to compensate for model variations. Note that if £ (w) is near unity,

indicattp a fairly high level of uncertainty, to meet strict performance

requireerts the loop pains would need to he very large. Therefore,

uncertaintv limits performance, and in order to meet stabilitv robustness

conditions high performance is not achievable at high frequencies where e (w)

grows 1," rRe.

One final function of interest comes from inverting (4.80) to get

.-.-4.,

t (w) < _-
m ~~ f(;(jw)K(iw) {I + C(jw)K(.jw)} -~

ThIp sav very direct], that stability is guaranteed for all perturbations
L(iw) who.se maximum- !.Irqular value falls below the right-hand side of (4.84).

Tn effect, a[T + {(;(iw)F(1w))- lI is a multivarlable gererall;Pation of SISO

stabiltty margin concepts. !his was shown in detel in Chapter 3 of these

r notes. A ma 4or differerce from the S1SO case is that +1[ + C()K(jw } - l

measuros stability robustne,,.- at the plant outputs or]%. To reflect

iincertnint- at the inpvt , T + {K(iw)1(w)} - I would have to be used.

, elationl,-ips between the two will he discussed in the no-.t chapter.
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% 4.2.5 a-Plot Interpretation

Just as In the SISO case, we can gr.3phically represent our peytormance and

I stability requirements, here through the use of singular value photp. Note ~

%that conditions have been derived for the maximum and minimum singular values

!% only, so only these are shown in Fig 4.5. Again wt assume that com~man~d

following, disturbance rejection, and closed-loop sensitivity reduction

are low-frequency concerns, while sensor noise reduction and stability

robustness are high-frequency requirements.

pERIGRMANC!

LOGW

UNCERTAINTY TOLE RANCE

Fig 4.5 The Hultivarleble Feedback flcsign Prc'blem

Note that the high-frequency bound is a requirement (stability is mardatory),

while the low frequency bound is (mathematically) only de.-,irahle. I.lsc, note

that both depend on e(w)/, as they represent stabillty ;;rd periormatice
m

robustness.

4-22



-~W V 7 - 77

'Ohviously, a phase plot is not included here. While singular values are

-in excellent measure of magnitude, they contain no measure of direction (le, '

phase) . This lnformatlot Is contained in the singular vectors, but not as.,;

cstrafghtforward]; as STSO phaqe. Some work has been done Interpreting singulpt

vecters (Ref 4-141, but it is not at a useful stage yet. This is not too severe

of a limitation, however. TWhen we defined SISO loop shapes. we didn't use RN1W

phase. Phase information is usually Important for evaluating stability

m(mrargins) and crossover properties. The phase of a rational function is

completely determined by fts gain and position of right-half plane poles and

zeros, as will be disce~sed further in the next chapter. Thus, the lack of

phase iftfformation for a multivariable system is not critical in most cases.

The hardsidth and roll-off near crossover are critical in a multivarlable

design. Thle bandwidth of C(jw)K(jw) cannot extend much beyond the crossover of

th e~ '0 plot. Th-c !severity of this constraint depends upon the slope at..-

-(, o Uf'(;w)~i)(and _9F(iw)K(iw)J; the steeper the better.

owevei , sr:eppness cormes at the expense of small stability margins. This will

b e fuirther discussed lit the next chapter.
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Appendix 4A

From (4.25)

rg*(s) + 6g(s)]k(s) -

*()46y(S) =----------------- r(s) (4A.1"

1 + fg*(s) + 6g(s)lk(s)
Dividing both sides by y*(s) yields

6v(s) [g*(s) + Sg(sflk(s-) r(s)
1 --------------------------------------------- -----

y*(s) I + [g*(s) + 6g(s)jk(s) y*(S)

Using (4.24), y*(s) on the right-hand side of (4A.?) may be eliminatc-6

yielding

1+6y(s) rg*(s) + 6g(s)]k(s) r 1s 1 + g*(s)k(s)

y*(s) I + fg*(s) + 6g(s)lk(s) r(s) g*(s)k(s)

[g*(s) + 6g(s)1 1 + g*(s)k(s)
- -- -- -- -- -- -- -- -- -- -- -- -- --- (4.A .3)

g*(s) I + g(s)k(s)

where fg*(s) + 6g(s)l was replaced by g(s) in the denominator. Subtracting I

from both sides of (4A.3) yields

6y~) Fg*(s,) + 6g(s)l 1 + g*(s)k(s) F !S~ l + sk()

*( g*(S) I + g(s)k(s) g*(s)rl + sks1

g*(s)fl + ?p*(s)k(s~1 + 6p(s)[i. + g*(s)k(s)l - g*(s)fl + p~s)k(s)1

g*(s)ri + F,(s)k(s-)1

(4 A.4)

* Looking at the last term in the numerator

g*(s)fl + g(s)k(s)] = gf.(s)f1 + {g*(s) + gs}~)

= R(sfl+ g*(s)k(s)l + g,*(s;)6g(s,)k(s) (4A.5)

* Substituting (4A.5) Into (4A.4) yields
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Sv~~~s) 4. -gsr + - g(V)g7W.~

6g-)+ 6g(s)g*(s)k(s) - g*(s)6g(s)k(s)

g*(s)[1 + g(s)k(s)l

- -(--- --.---
I + g(s)k(s) g*(s) 

(A6

This 4,; the desiied result.
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Appendix 4P

From (4.82) [dropping functional dependence for brevityl

*p 4cX[ + (I + L) GK] q f I + GK + T.GK]1 (0P.1)

Factoring I + GK from the right yields

p I+ LGK(I +GK) 1)(I + GK)] 14B.2)

Using .9[ABI >,2[A12rB1, we can see that

{I[ + LGK (I + GK) }(I + GK)i I >,q(I + LCK(T + CK) j gTl + GKI (LiB.3)

Using (4B.3), we can see that (4B.2) is satisfied If

p < 1[1 + LGK (I + GK) I ofT + GK] (4B.4)

Now, if we assume a[CK] >>I, (4B.4) becomes

p <.2fI + LGK(GK) [11gGKI = Or1 + Li .2.fGK (4B.5)

Using the relation .9[A + Bj1,2FA] --d[B1, (4B.5) is satisfied if

p f{ T I -- f L 1}1 rGK1 f 1 -~L 1) [CK1 (4F.6)

Since !Y(L] <9 , (4B.6) Is satisfied If O-

m

Assuming Z. <1 so that (I 9 is non-negative, (4B.7) may be rewrittenm In

p W
K. ~z] (.P)

This is the desired result.

-W4
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5. PFRFORMANCE LIMITATIONS FOR M1JLTIVARIABLE SYSTEMS

lie previous chapter developed equations that define a "good"

mnultivariable loop shape. Unfortunately, there are fundamental

limitations on the achievable performance of multivarlable systems which

make the shaping process nontrivial. Most of these limitations are also

present in 5150 design, such as:

1) the algebraic tradeoff between performance and robustness

")the furctional. tradeoff imposed by the Bode gain/phase

relations, and

3) limitations due to non-minimum phase zeros. ~ ~-

Another limitation, that of

/;) directionality In multiloop systems,

Is uniouely multIvaripble and has no SISO analog. We will now look at

all fotir limitations.

5.1 Trade-Of fs Between Performance and Robustness

Again, consider thev feedback configuration shown in Fig 5.1. We

PqSzzr;( that the noirinal ;vstem is stable.

Fig 51 MutivarableFeedbckDSSte

LRtS) + c at S the) ero eaainw dr(diS)h atchpe. Fo

(4.) 3))

5-I *+



e (jw) F T + G(jw)K(jw)I fr(jv) -d(jw)1

-1 .. %
+ [I + G(Jw)K(Jw)I G(jw)K(jw)n (Jw) (5.1)

For command following and disturbance rejection at any given frequency,

the above tells us we must have .~'

W,+ G(jw)K(jv)l I«< 1 (5.2)

or equivalently W

[~I + C(jw)K(jw) I > 1 (5.3)

at that frequency. This requires

ocF[(jw)K(jwf I > 1 (5.4)

at that frequency. However, from (5.1) we can also see that for sensor

noise reduction we require

Uf[I + G(jw)K(jw)]J C(Jw)K(jw) I =a{ fI + f{C(.jw)K(iw)} «1 < 1 (5.5)

or equivalently

G[I + {G(jw)K(jw)}- I >> 1 (5.6)

at frequencies where noise is large. Also, for good robustness

properties, equation (4.84) shows that

t~ (w) < arT + {C(jw)K(iw)) I (5.7)

Since t (w) Invariably grows large at high frequency, this becores the

same as the requirement in (5.6). To satisfy (5.6)

Gr G(jw) K Qw)) Ij >>1 (5.9)

or

Y[G(lw)K(1w)] << 1 (5.9)

Obviously, this Is the reverse of the requirement ir (5.4). This ~

indicates a trade-off -- at any given frequency, it Is possible to have

2.[c(jw)K(jwfl I for command following or disturbonce rejectior or to

have U-fG(jw)K(jw))I« I for reduction of sensor noise effects and good

stability margins, but not both.
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Another way to see this is by looking at the relationship between ,.*. ,

[I -t C(jw)K(Jw)] and [I + G(Jw)K(jw) -G(jw)K(iw). Introducing

terminology from Chapter 2

S(jw) = sensitivity matrix

= [I + G(jw)K(jw)]-  (5.10)

T(jw) = complimentary sensitivity matrix

= [I + G(jw)K(jw)1 C(.Jw)R(iw) (5.11)

If we add these functions, we see that

S + T = [I + CK - + fT 4 GKl -GK = I + GKI [I + GK1 = I (5.12) -ok .

Remember that we need loop gains to be large for command following and

disturbance reiection. If C(jw)K(jw) is large, so is fT + G(iw)K(jw)-

and therefore S(jw) is small. From (5.12) this implies T(jw) is near

unity, and looking at (5.5) tells us that noise reduction and margins

are poor here. The same argument holds true in reverse if loop gains

are small. Thus, command following/disturbance rejection may only be

achieved where sensor noise/margins are not critical, and vice versa.

The above conclusion is a limitation of feedback systems, but is

not devastating for "typical" systems. Since commands and disturbances

usually have most of their energy at low frequency while sensor noise

and the need for robustness is large at high frequency, the conflict is

minor. However, transition from one region to the other is critical.

Here, poor performance and poor stability robustness must be avoided.

This will be discussed next.

5.? Functional Limitatlons on Transfer Functions

Let's take a look at what the "best" loop transfer function would

loole like, from a command following/disturbance rejection and noise

attenuation/robustness to uncertainties point of view. For ease, let's

5-3
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call this performance vs. robustness. To achieve the "best"

performance, we want ioop gains to be as high as possible over a w.ide

frequency range. For robustness, we want them to be low over a wide

frequency range. Looking just at SISO for convenience, this Implies the

loop shape in Fig 5.2.

gk

________log w

Fig 5.2. An "Ideal" Loop Shape

So what's wrong with this?

V7
For finite dimensional, linear time-invariant transfer functions,

Bode (Ref f5-11) derived relationships between gain and phase, known as

the Bode gain-phase relations. Without going into the details, F-ince

they Involve contour integration of logarithmic an~d hyperbolic trig

functions, these relations show that for a minimum phase SJSO transfer

function the phase angle near crossover Is uniquely determined by the

gain. Furthermore, steep attenuation in gain come~s only at the expense
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of small 1 + {g(Jw)k(jw)}-I and 1i + g(jw)k(jw)j values when

[g(jw)k(iw)l = 1. Therefore, both performance and robustness are poor

near crossover If the slope of the loop gain is large.

If the system is non-minimum phase, the right-half plane zeros will

reduce total phase at crossover, thus making the problem worse. All of

these results have been extended to MIMO systems (Ref f5-21) (using

eigenvalues since singular values are not analytic) and the same .

properties hold. Therefore, this imposes another limit on achievable

performance - loop gains must be reduced gradually before crossover,

thus reducing performance near crossover. Also, if M(w) increases

raplely after crossover, the loop gain may have to be further reduced at

lower frequencies.

5.? Behavior of Non-Minimum Phase Systems

iultivariable non-minimum phase systems are defined by right-half

plane transmission zeros. Transmission zeros are defined in Chapter 2

of these notes. They are alwavs undesirable from a feedback point of

view. We have already stated in the last section that they reduce the

phase nngle near crossover and thus reduce stability margins. They

cannot be removed from a system through inverse compensation (pole-zero

carellation) since they (as well as any other poles and zeros) are

never 1known exactly. The compensation to remove them would be unstable,

nnd if there was any error in the zero location, the zero would not be

cancelled and the compensator would introduce an instability. Thinking

of the STSO root locus, the open-loop poles move towards the zeros, and

rhuP a non-mlnimum phase system goes unstable at some value of gain.

Tll; also happens in a mltivariable system, and In the frequency .

eo',In, loop gains niust be small In the frequency range "near" the zero

5-5
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(Ref [5-3]). We will discuss more ramifications of non-minimum phase

zeros in Chapter 13.

5.4 Directionality in MIMO Systems P.

- The concept of direction in a feedback system is unique to

multivariable systems. Multivarlable system signals have a "spatial" as

well as a frequency distribution. For example, some sensors may be

noisier than others, actuators may have different saturation levels,

disturbances may enter only some channels, etc. This leads to the

concept of different bandwidths in various loops. Also, this concept of

varying direction translates into the perturbation matrix L(jw) as well.

The stability tests are tight if all that is known about L(jw) is its

maximum singular value. If we know more about the uncertainty - such as

large in one direction and small in another - then the stability tests

may be sharpened through introducing frequency-dependent weighting

matrices, such as

-1-1-
"[Q(jw)L(jw)R (Jw)] < tfR(jw){T + G(jw)K(jw))- Q- (jw) 1 (5.13) .,., ..

where R(jw) and O(jw) reflect the known characteristics of the 'l

perturbations. We won't go into any more detail on this here, and the

reader is referred to [5-41 for more details.

This idea of directionality extends one step further. Tr SISO

systems, inserting uncertainties at the Input or at the output of the

plant yields identical results (ie, margins). This is because

g(jw)k(jw) = k(jw)g(jw) when g(jw) and k(jw) are scalar functions. This

is not true in the multivariable case. For MIMO systems, properties of

the system depend upon where the loops are broken. For loop properties..:. .. . -

at the output, we use G(jw)K(jw) in all formulas; at the input we u.e

K(jw)G(jw). Note that in the development in Chapters 7 and R we will

5-6

. . . .. .. .. ..e.-. . . .. . . . . . . . . . . .. .. ... ..



concentrate on using K(jw)G(jw) as the loop transfer function, because

we will be looking at input properties. In Chapter 9, we will look at

both. Focusing on stability margins, good margins at one point do not

necessarily imply good margins at another. It is possible to devise a

scheme to fix the margins at one point, then optimize the margins at the Q.

other; more on this may be found in Ref f5-21. Actually, it may be most

desirable to optimlze both margins simultaneously. This requires a

special tool known as the structured singular value (Ref [5-51), which

was briefly introduced in Chapter 3.

All of these Ideas imply a limitation on achievable performance in

a multivariable system. For tight robustness bounds, all loops should

be close together or some transformation will have to be made.

Otherwise, the robustness tests may be quite conservative. If there Is

wide separation in the loops, the input and output properties will

differ (possibly radically), and a compromise may have to be made.

Summarizing the entire chapter, feedback design involves tradeoffs.

Analysis and design techniques must make these tradeoffs clear to the

control engineer. As we have already discussed analysis techniques in

Chapter 3, we'll turn our attention toward synthesis. We want a

-, synthesis method that stabilizes the nominal system and guarantees both

stability and performance of the perturbed system. Also, we require the

trad ctfs to be transparent throughout. In order to build up to the

svnthesis method we wil] develop, we need to start at its most basic

level ani modify it accordingly. Thus, the next chapter reviews the

opti nal control problem, which forms the basis of our method.

5-7 .
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6. A REVIEW OF OPTIMAL CONTROL THEORY *-'-" ","

.- -.. ,

In Chapters 4 end 5, we defined a "pood" loop shape and some of the

limitations we must face in achieving that shape. In those chapters, ,e

assumed that the nominal closed-loop system was stable. This chapter

will give an introduction to optimal control theory, which gives us a

synthesis procedure that insures nominal closed-loop stability. In the

following chapters, we will examine and modify the procedure so that the

goals in Chapter 4 may be achieved. This chapter is by no means a

comprehensive study of optimal control -- rather, it is meant to serve

as a summary. There are numerous references on optimal control, ranging

in difficulty from very basic to highly mathematical and in scope from

applications-oriented to theoretically pure. This chapter contains no

applications, but does not contain the background theory either.

Father, it attempts to give a generic user-oriented coverage of the

rE'cuired equations, as well as define nomenclature for the remaining

chapters. There is a reference list at the end of the chapter

containing many of the texts on the subject, where both the theory and

many applications may be found.

6.1 The Linear Ouadratic Regulator

Suppose that we have the state-space system

(t) --A,(t) + Bu(t) (6.1)

where, for now, we male no assumptions on open-loop stability,

controllability, etc. We will only consider the Lime-invariant case

here. We wish to minimize the performance Index

= T T
-- Ix (t)Q Y(t) + uTR u(t)l dt (6.?)0

Thi s performance index, commonly called the quadratic performance indey,

sav - that we wish to find a control law u(t) such that the

6-1
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integral-squared-error of the deviations of the state tralectories from

their nominal are kept small without using a great deal of control

the designer to dictate the relative "importance" of the states and

cont rolIs. _ ,

Obviously, to minimize J we need to insure that J is indeed finite.

J will become infinite if uncontrollable, unstable state trajectories

are reflected In the performance index. Therefore, if [A, BI is

completely controllable, the index J will remain finite. This is z.,

actually only a sufficient condition. The necessary end sufficiert

condition is that [A, B] be stabilizable, which is what we Irplied by

restricting uncontrollable, unstable modes. Under this apsumption, only

the controllable modes will be moved under feedback (this is obvious

from the definitior of uncontrollable modes).

Under the assumption ef stabilizability, we can always find some

feedback law

u(t) = -K x(t) (6.3)
c

that makes the closed-loop system

;(t) = Ax(t) + B[- x(t)1
c

= rA - BY ]x(t) (6. )
c

asymptotically stable and thus results In P finite value of the

performance Index. Without going into the optimization theory reouiTed

to prove what the solution is, we will claim that the K matri- ;n (6.3)

which minimizes (6.2) is given by

V = Bp (6.5) ""
c c

where P is the solution to the algebraic Riccati equation .

T -iT
0 A P + PA- PBR B P+ (6.6)

C .
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The lbove equations require R to be positive definite. Also, It may be
C

4-hnwn that the iTnimum value of the performance index Is given by

mm .1 = x (O)Px(0) (6.7)

Unfortunately, there is more than one solutior to (6.6). In the

theoretical development of the problem (which we omitted), the P which I
produces the minivmum value of J given in (6.7) is required to be

positive definite (note that all solutions are symmetric, which may be

see, by transposing (6.6)). There is only one unique positive definite

solution, so tH. -is the one we want. Note that most control software

findq only this one, not all possible solutions.

Pemember that so far we have only said that there exists a K which
c

stabilires the system. We need to add one more requirement in order to

gliivantee that the development above will find one. If there are

ion.table state tralectories which are not "observed" by the performance

index, the optimal control law will not attempt to change them and the

res ulting closed-loop system will not be stable. A'ternatively, if all

T
the trajectori(os do show up in the x Qx term, closed-loop stability is

ensuied, since otherwise the index J would be infinite. All the

Ttr.iectorlep will appear In x 0 x if Q is positive definite, and thus
c c

: >0. is a sufficient condition for asymptotic stability. Actually, we

can re1lax the positive definite requirement to positive semidefinite as

101,' as the pair [A, HI is observable, where H is any matrix such that

= ;nother way of saying this Is that I! is ni square root of (~

Ti'i: e easily ,;cer by checking Lvapunov stability criteria, but we will

not include the prof here. Usually, we define P system response

eni-ation as

7(t) = Hx(t) (6.8)
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to give a physical meaning to H. This also provide-, an exceli.,'

rationale for choosing Q -- notice that

Jf0 fx x+ u uldt

T TT T
f X f i HYr + u R uldt

f= [0  z 4 uTR uldt(6)
c

so that by choosing Q =H TH we are actually rpecuiring rpgulatioi: cf

set of system responses given by (6.8).

Therefore, the requirement of observability of the pair [P., Illis ~
also a sufficient condition for asymptotic stability of the clop'ed-Ioop

system. This may be tightened to a necessary and sufficient condition

by requiring detectability of the pair [A, 11], since onlv the unsItable

modes must be moved. Under a detectabil4 tv requirenent, the rc-oiirenent

that P be positive definite is relaxed to positive ! ernideflitp.

Now we will summarize the results:

Given the stahilizable linear time-Invariant plant

;(t Ax(t) + Bu(t) (6.1)

with the performance index

j f x (T)Q x(t) + u T(t)P u(t) ldt (6.2)

where Qc Q 0 0 (positive serildefinite) and F F > >0 (positivo
c cC r

definite), a unique optimal control law that mrinimnive, J1 exists and is

given by

u(t) =-K x(t)(63
c

with

K B- T1) (6.5)

where F Is a constant, symmetric positive semidef Trite matrix- wlbicf: is'

the solution to the alpebraic Piccati. equitir~n

A11+ PA-PBR R P+Q O=0 (6.(,)
cc

6-4
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The closed-loop rc5:ulator

[i) A - B3( jx(t) [A B FR -B~Plx(t)(6)

C C

,-:1nptotlc;- 1 v stable ir the svstem given by the state equations

(6.!) Arid response equations

7) PX(t)(.)

Is detectable. 'The minimum value of the performance Index is

.mi = T(n)Px(O) (6.7)

6.? The Kalman Filter

In order to inpleyrent the regulator described in the previous

section, we would have to be able to measure all the states in our

sYstem. This ic, obviously an unrealist ( assumption. Whnat we can

measn-re are outputs, through the sensors in our system. All sensors have~

n~oise associated with them, which means that our measurements are not

perfect. Additiorally, real systems will always have some type of

flc-:t.5 or biases affectinfg them, which will corrupt the state equatlons.

Tiereforp, we neec F: way to reconstruct our state equations and produce

i~ C-Stimate of rhem, uising our noisy measurements ;:nd accounting for tile

process n.oise entering, our plant.

We will not fo into any probability theory In these notes -

rather, we will as-sume the reader has a basic level of understanding.

W4e will consider ai stochastic linear system of the formi

k(t) = A(t) 4 BU t) + P (t) (6. 10)

y (t) =' (t) + I! t) (.1

where C (t) and n(t) are vector random processes cal led process noise are!

mes.murervent noise, respectively. V~ote that lorrally the differential

cniiatiori in (6.10) i" not well defined hecaxise on- the noise input, butr

ut will use thiis form for convenience. The discrete-time case has no
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such problem. The processes E(t) and n(t) are assumed to be zero-nvan,

uncorrelated, Gaussian white noises, so that

ERC(t)1 = Frn(t)7 = 0) IF t (6. 1)

E[E(t)C (T)1 = Q 6(t-r) (6.13)
0 %.

Efn(t)n TCr)] = R f 6(t--[) 9 t'T (6.14) 4

iZ EfC(t)n T (-0)J= (6.15) P

with 0Wt and IRf(t) symmetric, positive semidefinite and positive

definite matrices, respectively, and 6 is the delta function.

What we now wish to do is to produce an estimate, V(T), of the

state, x(T), at times T > t . using only the noisy measurement data

0

{y(t): to < t< T1. We will do this by forming the state error vector

and minimizing the mean-square error

e(T) = E[Ijx(t) - 2Xtj

= Ele T(t)e(t)l (6.17)

We will now skip over the theoretical details and lump to our result.

For the time-invariant case, we must assume that (t) and n(t) rr(,

wide-sense stationary; the matrices 0 and Rthen become corptant

matrices. Also, we must assume that the observation (if the outnut

begins at t 0 As long, as the observation tire I., Jon? -T-pared to

the dominant time constants of the system, this ossumption is ieasonahbylTv

valid.

We will assume that our estimator takes the form of an observer.

given by

=~t Ax'(t) + Bu~t) + K [V(t" C (t)1 KP .-

The Valman filter gain matrix, Kf9 which minimizes eqitation (6.17) Is

given by
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OAiere Z is the variance of the error (which, under our assumptions, Is

Cern,fylt since c(t) Is also stationary), and Is found by solving the

algebraft variance Riccati equation

0) = EZ + Qf Z CTR f CE (6.')

T
0, =FC F (.

0

Nlotire that if r T (that is, each state has Its own distinct process

noiF-P), then f Q0.

The algebraic variance (filter) Piccati ectuatlon shown in (6.20l)

T'P- -everal solutions -- the "correct" solution is unique and positive

defIio. A sufficiert condition for Z to exist as t - -is that the W

pair (A, C1 be completely observable. This condition may be relaxed to

detectability, in w~hich case it is necessary and sufficient and Z may be

)otlive serldefinite. Given that E exists, the error dynamics of the

Miter are

=[Ax(t) + Rui(t) +rC(t)J [Ax(t) + Blu(t) + K {y(t)- ()1

=Av-(t) 4 fu(t) + rC(t) -AxA(t) _ Bu(t)

K KRx (r) + n (t) - ItCX(t)

[ A V VciY(t) -A - KfC1x^(t) + rt(t) - K~n(t)

= P C1I{X(t) - (t)) + 1' (t) 1- TKnt)

[A Y f (let). [2)f

L(tJ

'rhcerefc're, the pole., of [A - KfC] are the pole,, of the filter.

Obviously, rhesc poles must be stable or the filter .AII fail to

estimante the states (we muxst have the error going to a small value, not

6-7



infinity). A sufficient condition for the filter to be asymptotically

stable is that the pair [A,T' I be completely controllable. This may be '*.

relaxed to stabilizability, In which case it Is a necessary and

sufficient condition for stability. r

Again, we will summarize our results:

Given the detectable linear time-invariant plant

() Ax(t) + Bu~t) + ru(t) (6.10)

y(t) =Cx(t) + n(t) (6.11)

with V(t) ind n(t) being zero-mean, wide-sense stationary, uncorrelated,

Gaussian white noises with intensities

T
E(t)C (T)] = Q 6(t-r) (6.13)

Efn(tOn Tt)J = Rf6(t-T)' (6.14)

where Q Is positive semidefinite and R is positive definite 1'oth are

symmetric). A unique Kalman filter gain matrix wHich minimnizes

T
Ele (t)e(t)j 6.7

where

e(t) =X(t) - (t (6.16)

and x(t is defined by

X(t) = ~&t) + Bu(t) + Kfyt -X () (. 8

is given by

K EC T~ R 1(6.19)
f f

where E is the constant, symmetric, positive scridefinIte matrix which

Is the solution to the algebraic filter Ficcati eanatior

T' T I 620
0 A E+ EA + f Er R fCE(.0

where

Pf =rQP (6.N1)

The filter polps art- given by the poles of tile ( Trrr dvnamic-1
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[A F re~t) I( -

f• f

i~~)= A- gf~~)+ rr -K]L (6.?.?) "i-d"'''

which are asymptotically stable Iff the pair fA, r ] is stabilizable.

6.3 The Linear Quadratic Gaussian Compensator

Now that we have derived the LQ Regulator, which has the 11
deficiency of assuming all states are available for measurement, and we

,o have the developyent of the Kalman filter, which produces an

"optimal" estimate of the states, we need to put them together. In this

section, we will simply state the problem and its solution.

C;iven

e(t)O AY(t) + Buft) + r t) (6.23)

y (t) Cx(t) + n(t) (6.24)

z (t) = lix(t) (6.25)

where { (t) and n(t) are Gaussian white noise processes with zero means

and intensities

EFr(t)C (r)l Q o(t-T) (6.26)

F[n(t)nT(T) = P6f(t-T) (6.7)

vith0 > 0 and P >0 (both are symmetric). We wish to find a control

lay of the form

u~t) = tI y(t), t) (6.28)

to minimize the criterion

. { 1lm I ~T T )+u. T f [zF .zt(t)Z(t (t) u u(t)Jdt} (6.29)

V(. yrtiit have FA, BI and rA, r) stabilizable as well as fA, C] and [A, P1"

-erpctah]e. Also, R must be symmetric positive definite. The control-W

1aij whirh minimizes (6.29) Is given by

u(t) = -Y Y(t) (6.30)

where V is the regulator gain matrix given by

6-9
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-I T
K =R B P (6.31)

T 
-IT

0=A P +PA +0 -PBR B P (6.32)
C C

and AX(t) is the current estimate of the state x(t) based on mnrapurements

Of YMr, T 4t. This estimate is defined by the Yalman filter

X(t) =Af(t) + Bu(t) + KfYt - x() (6.34)

with the Kalman filter gain matrix Y% given bv

Y EC FI (6.35)

fff

Qf=rQ rT (6.37)

Under these conditions, the regulator poles, given by

detfsI - A + BK] = 0 (6.38)

and the filter poles, given by

detfsl - A + K C] =0 (6. 39)
f

are guaranteed to be stable. We will now look at the expression, for the

LOG compensator, that is, the dynamic output feedback compensator made

up of the regulator and filter equations. Substitiiting (6.30) into

(6.34) we get

X(t) =AAY(t) -BK A(t) + Kfy(t) -Kf(t

rA - BK -KfC
9 t x Kfy(t) (6.40)

Taking Laplace transforms and rearranging yield,,,

Ax(s) = rsT A + BK 4 Kfr] -l fys (6.41)

Substituting (6.41) Into the Laplace transform of (6.30) yields :

u(s) =-K (si - A + BK~ + KfC) Kfy(s) (.2
c f

This is the expression for the LQr compensator. We can writ-( the plant

transfer function as (omitting the noises for a moment)

-Iy(s) =C(sT A) Bu(s) (6.43)

6-10 .'
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Fi2Q 6.1 shows a block diagram of the LOG system.

K(s) G(s)

Fig 6.1 Block Diagram of the LOG System

It is easy to show that the poles of the compensator, given by

detfsl -A + BKY + KfC] 0 (6.44)

are not always stable. See the second example in Chapter 8 of these

notes for more discussion on this. We can, however, show that the

closed-loop system is indeed guaranteed to be stable, which is the

crucial requirement.

To show closed-loop stability, we need to look at the eigenvalues

of the closed-loop system. We have two sets of n equations each,

defined by the combination of (6.23) and (6.30), which is

Ax(t) - BK (t) + Tf)(6.45)

* and the~ combination of (6.40) and (6.24), which is

X(t) rA - BK -K fClq(t) + V.f CX(t) + K fn(t) (6.46)

Writing thes-e In stste-space form %?Ives

A A fc Jfj~t
+, (6.47)

1%% 6-11
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The closed-loop LQG poles are therefore given h%.

sI -. A

det :(6.4R)
-K C sI-A +BK + KCl

Unfortunately, stability of the poles is not obvious from (6.4R). There

is a trick we can do to solve the problem, however. Remember hii the

last section. we defined the estimator error by

so that

- A - KfCle(t) + [r -Y (.?

We can substitute

'X(t) =x(t) -e(t) (6.49)

into (6.45) to obtain

~()=Ax (t) BY B fx(t) -e(t)l + r (0

= A - BK Jx(t) + BK e(t) + Pr (t) (6.50)c c

Now we can write (6.22) and (6.50) in state-space formi as

[t.() - BK BK (~~) r o ~t)1

;(t) L A - K~~ (01 r nt
The eigenvalues of (6.51) must be the same as the eigeiuvalues ol f- ),-

because their state vectors are related by a nonsingular linear

transformation. Therefore, the closed-loop TOG poles are given I-y

T A + BK-BK

si -A +K, C

U~sing Schur's formula from Chapter 2, (6.5?) ma\ Ic writter n!-

$ etf[,T -A + BK l-detfsT -A + F C1 n lU,

6-12
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Therefore, the closed-loop poles of the overall LO system are simply

the poles of the regulator and the poles of the fflter, which we have ',...

nlready shown are guararteed to be stable. Therefore, LQC compensators

alvays produce stable closed-loop systems.

Ve have now discussed four sets of poles, which can become

confusing if we are not careful. Therefore, we summarize them here,

along with the name we will be giving each set from here on:

Regulator poles --- X [A - BK (always stable)

Filter poles - [A - KfC1 (always stable)

Compensator poles - A [A- BK - C (not always stable)
I c 1fl

Closed-loop poles - X1 [A - BYcI, X [A - KfC (always stable)

6.'4 Asymptotic Properties of the Regulator and Filter

Ve will close this chapter by examining properties of the regulator

6.:d filter as the control weighting (R. or Rf) gets very small or very

large. This is exactly the same as letting the state weighting get very"-

large or very small, respectively (shown in Appendix 8A). We will not

show the full proof here, which Is given In Ref [6-1, pp 281-289 and pp

36P-370. Rather, we will only state the results.

6.4.1 Asymptotic Regulator Properties

Consider the system given by (6.23) - (6.25). Let the control

weightlng be

1 =P N (6.54)
c

where P > 0, N > 0. Let

G (s) f H(sl - A)- B (6.55)

a is p--+n, r (f the regulator poles approach thy values ,

-" 1,?,...,p , wlere

6-13
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-- if Fe~ 4

Z, (6.56

orer an differen r i .- <

= -~ (6.56)( Ref Re>O

and 7Tare the praesmi o zeo of(S).Tersinn - ~lsg

toenfiitd an roup topseval reuateortil sipltrn moe difen

b)polest hi ethl ln irries , prach thae v ale poe

vital unafifeected.

And are thse r o es of te gienb (.3)(62). Lt

mesret nieeing rto nted thtwebonryuae sh~v

4.~~~~hr Agi con0de th sy0te Lieeyt6?)(.5) h

C,(s C(sT -A) r (.~

Then

A

a) as P -O, p of the filter poles approach the values VC,

.. 12... ,n, where

-~~:if Re(vl 0 ~~(.0

_v If Re (NY > 0

6-14
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ard v are the trinsmission zeros of C (s). The remaining n-p poles go
4 ~2 ..

to infinity and group into several Butterworth patterns of different

ordurs and different rndii.

as p-P* the n filter poles approach the values

i =T,?...n ,where

if Pe(7r1) < 0
= -~ (6.61)

IT If Pe(1T 1 > 0

t'ow that we ha',e looked at somie general properties of optimal

rep~'ators and filters, we will concentrate on specifics. The first

aspect we will eyv;nine Is robustness properties of the regulator, which

we rake up In~ the n~ext chapter.

6-15



Chapter 6 References

[6-1] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems,
Wiley-Interscience, New York, 1972.

[6-21 M. Athans and P. Falb, Optimal Control, MeCraw-Hill, New York,
1966.

[6-3] B.D.O. Anderson and J.B. Moore, Linear Optimal Control,
Prentice-Hall, N.J., 1971.

[6-4] J.J. D'Azzo and C.H. Houpis, Linear Control System Analysis ridn-
Design, McGraw-Hill, New York, 1981.

[6-5] A. Gelb, Applied Optimal Estimation, MIT Press, Cambridge, MA,

1974.

[6-6] P. Maybeck, Stochastic Models, Estimation, and Control, Vol's
1-3, Academic Press, New York, 1979, 1982.

[6-7] D.E. Kirk, Optimal Control Theory: An Introduction,
Prentice-Fall, NJ, 1970.

[6-8] T.E. Fortmann and K.L. Hitz, An Introduction to Linear Control
Systems, Marcel Dekker, New York, 1977.

[6-91 S.J. Citron, Elements of Optimal Control, Holt, Rinehart, and

Winston, New York, 1969.

[6-10] A.E. Bryson and Y-C Ho, Applied Optimal Control, Hemisphere Pub.
Co., Washington, 1975.

[6-11] G. Leitmann, The Calculus of Variations and Optimal Control,
Plenum Press, New York, 1981.

[6-12] M. Gopal, Modern Control System Theory, Halsted Press, New York,
1984.

[6-131 A.P. Sage and C.C. White, Optimum Systems Control,
Prentice-Hall., NJ, 1977.

[6-141 C. Stein and Sandell, "Classical and Modern Methods for Control
System Design", Notes for Subject 6.291, Mass. Inst. of Tech.,
Cambridge, MA, Spring 1979.

[6-151 M. Athans, "Lecture Notes on Multivariahle Control Systems"
" LIDS Report, Mass. Inst. of Tech., Cambridge, MA, June iqp1.-.

[6-16] "Special Issue on the LO, Problem," IEEF Traoc Auto, Cortrol,
Dec, 1971.

6-16

,. . .. . . . . . .

.....,



7. GUARANTEED MARGINS OF LINEAR QUADRATIC REGULATORS

/ well known, property of Linear Ouadratie Regulators is that they

eyhibit guaranteed stability margins. The chapter contains a proof of

what these margins are. To do this, we start by using several matrix

manipulations on the regulator equations we derived In the last chapter. Oil-

7.1 Derivation of the Kalman Inequality

We start by looking at the algebraic Riccati equation for the

regulator [ note that we will drop the subscript c on 0, P., and K in

this chapter siri(e there are no filter equations

TT
PA + A P - PBR 'B P + 0 = 0 (7.1)

1sinp tt:*: state equation and feedback law

Ax + Bu (7.2)

, -F. (7.3)

we t:ro , from the prvious chapter that the regulator gain matrix V Is

'.Iven b,

VJ IRP (7.4)

Transposing this yields

I PBR (7.5)

.;ince P and R are symmetric. Using (7.4) and (7.5), the following -.

relation is obvious

-i -IT -ITR" (PB,- )R(R-B P) = PER B P (7.6)

V.W .e c13n substitute thi,, into (7.1) to yield

.' A'1' - K RK + 0 (7.7)

Add ,,c, and subtractirg sP (= Ps) froir both sides yields

'A -Ps + sI 4P- T R: + 0 = 0 (7.")

'itp"I,'I tV (-1 aT1d rearranging gives 2

7-1
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T TP(ST - A) + (-si - A )P + Y, RI( (7.9)

Now, for completely unobvious reasons, multiply both sides of (7.9) on .

TT1 I1-the left by R -B (-sI - A ) and on the right by (FT A)- BR *

yield

OBT(-si - A T) P(sI - )sT - A)- BP''

- T T -1 T~
+ V 'T (--si ATl (-si - T )P(sl -A)- 

1 PR-

T1 T -1T - ~
+ R ~B(-sI - A ) K RY(sI - A) R

- ' (T - A T) -1Q(T (-- < A)- BR!5

or

R -1BT (-sI A T PBR 2 + P 5BT P( I - A)- BPR

~T TT ATI TA
+) K RK(sT - ) BRI

= RBT(_sI AT ) I Q(sI - A)- IB0. (7. 10)

Notice from (7.4) and (7.5) that

-TR B P RY (71

and

PBR 1
=TR (7. 1?)

Substituting these into (7.10) yields

-T T-1 T' 1R B C-sI -A) K + RK(sI - A)- BR-

+ RBC-sT A , KsT A) BR

- B R T (-si - A T I (sl - A)- BR-(.3

By divine inspiration (seems that way, anyway), notice that b
IT + R K(-sI - A) -1BR IT + R K(sT - A) RP 2

-T T)-1 T 1
= fl + R B (-sl A )KTR III + R K(sl A) BR I

d -~~ T T -IT ~- '

= I + R B (-si A) K R + Ri((sl A.) BR

R T T-I T-1 -

+RB(-si A )K RK(sl - A) BR (7.14)

so that by adding I to each side of (7.13) the rc'zut1tnp equation qnud

(7.14) are equal. Therefore,
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fT + RK(sI - A) IBP T [I + RK(sI - A) -BR -

= 1 + R-BT (-sl - ATIQ(sI - A) BR (7.15) S.

Substittting s = w, (7.15) becomes

[I + R"K(-jw] - A) BR - T[I + P Y(jwl - A)-IBR-'1

= I R- RBT ATSI + B (-IwT - AT Q(Jwl - A) BR (7.16)

It is easy to verify that the left-hand side of (7.16) is Hermitian, and

the right-hand side is of the form I + X (jw)QY(jw). Both of these

facts are shown explicitly in Appendix 7A.

.I.e will adopt the notation C1  C2 for arbitrary Hermitian matrices

to indicate that C - C2 is nonnegative. Since Q>, 0 from the definition

of the state weighting matrix, X (jw)OX(Jw)>0. Rewriting (7.16) as"~~~ ~ TI + 1 (il ~w*
"YdJwT A)-B

.T + P Y(-iwT - A, -BR- T T + - -BR_ ..

X (iw)OX(jw) 0 (7.17)

it is obvious that

.'[ + RK(-JwT - A)- I BR- T[F + RkK(Jw - A)-IBR- 1 > I (7.18)

The relation in (7.18) is known as the Kalman Inequality.

7.1 Guaranteed Margins for the SISO Case

First, let's look at the SISO case. The Kalman Inequality becomes
< (-jwl -A

[l rk(-lwI - A) I br- [I1 + r k(JwI - A)-br -  > 1 (7.19)

where the underbar denotes vector auantlties. The left-hand side can be

simplified as follows

-A) - T I 1 -[1 + r k(-IwT A)-br I fI + rk(jwI -A) br -

[ + k(-iw -A) b T [I + k(iwl - A)-bl

[I + k(twT- A) b11 + k(iwI- A )-

1i 4 kl - AY)b (7.20)

"L: ~Thc. efore"[

T I + k(JwT -A)- 1 bj 2 ',1

7-3
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or

1 + k(JwI-A)-b_ 1 (7.2?2)

Nov let's look at a block diagram of the state equations (7.?) and (7.3)

for the SISO case, as shown in Fig 7.1.

r=O + jw A

Fig 7.1 SISO Block Diagram for the LO Regulator

From Fig 7.1, we can see that I + k(1wI - A) b is the return difference

function for the regulator. Therefore, (7.22) says that the magnitude

of the return difference for a SISO Linear fuadratic Regulator Is always

greater than or equal to one. Looking at a polar plot of k(Jwl-A) b,

this says that the plot must never enter a unit disk centered at the .

-1 + jO point. Some typical polar plots are shown in Fig 7.2.
... -

-_ 
.° '° i

a ~ p~ . ... p a'a~~t.a•s ..-ri..



-. ~77

0%

-a =k(jwl-a) b

%A 
A

.. t.2

(a) 2(b)

%0

B

A

B 1

I 7.? Typical pclar plots of optimal systems, with disks centered at i

*-1 4 10l. Note that (c) has two open-loop unstable poles

Fron these plots, It is easy to verIfy that the minimnum gain margin (CYl)

and pha -.e margin (P?!.) of a Linear Oundratlc Fegulator are given by

1, < (7.23)

-60" < PM~ < 60"' (7.24)

'e % Plot to6 illustr,-tcs these limits the best. Obviously, in any of these

plots, tfc pain may be increased to Infinity. If point P. In plot (c)

w~rP Pt the edge of the unit disk (-?+JO point), which is a worst case,

tht r gr ain could he halved before Instabilitv. This yields the
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guaranteed (minimum) margin In (7.23). Point b on plot (c) indicates

where the polar plot has unit magnitude. Again as a worst case, if B

were on the edge of the disk, the angle betweer B and the negative real

axis would he 6W°, thus they guaranteed 6O phase margin. Thp -6 '

limit is iust the margin at the crossing point above the real avic. (tiat

is, point B*).

7.3 Cuaranteed Margins for the MTMO Case

Now that we have shown the guaranteed marpins for STSO regulators,

let's extend this to the MIMO case. First we consider the case where 7.z:

R - pT 0.25)

and p is a positive scalar. This choice of R Is very common ard will be

used extensively later in these notes. For this choice of R, (7.1P)

becomes ".

[I + (PI) Y(PI)-I fT + (pI) Y(pI) T1 I (7.26)

where Y = K(JwJ - A)- B, and since the pI terms may be moved to either

side of Y, (7.26) is obviously

[I + YJ [ T + Y1 > T (7.2'7'

or

[T + K(JwT - A)- B]*[T + K(lwl - A)- B > T (7.2P)

which is true iff

2r + Kiwl - A)-1 ] 1 (7.29)

This is proved in Appendix 7B. totice that thp term on the left-hpnd

side of (7.29) is the minimum singular value of the return difference

matrix, since K(jwl - A)- B Is again the loop trar.fer matrix. Tvoking

back to Chapter 3, we see that this equation ha.F the torm of (.1"., so

that we can define a = I and plug this value into (3.41) and (3.4)) to

obtain the gain and phase margins 7
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--- C M < (3.41)
* I 1-a 1

Or

< <CM < -(7.30)

"?sin- (a/?) < PH < 2sn-(a 1/2) (3.42)

o r

-600 < PM < 600 (7.31)

This is obviouslv tie same as the STSO result, which is what we

expected.

Technically, we still have two more steps before we reach the end.

First, we would need to show the margins for any general diagoral P, And

thcr 'or any general R. The first was shown by Safonov and Athans

f7-0, and due to its complexity will not be shown here. Again the

gu;iranteed margins are as in (7.30) and (7.31). Finally, since any

generzl selection for R can always be equivalently replaced by some

dtironal choice (7-51, we have the final result. Thus, (7.30) and

(7.31) are the guaranteed minimum gain and phase margins for any Linear

Ouadratic Regulator.

infortunatelv, these results are true in theory only. From an

irti,itive viewpoint, we should know that gain cannot be increased

infinitely for a real system. Let's take a loo1 at why the theory tells

us it can, aird what the implications of the practical limitations are.

Arv full-state feedback design alwavs results in a loop transfer

function with one mere pole than zern. For a SISO system, this can be

;cen by rearrpnging the Ylock diagram so that the compensator has the

forn, u = I eqy , as done in Ref (7-61. Tt is clear that k will have

(n-:) 'eros, ;., re n Is the number of poles of g, thus viving gk a

7-7



- - .. . . . .~ - . - -

pone-pole excess (the zeros of g are the poles of V . This car -,!so bKe
eq

extended to the MIMO case. Remember that the U). Regulator is a

full-state feedback design, so It must have this property. This means

that the regulator will have high frequency attenuation of the formi

(Rf ~:bo~cnX eq (s ~l-A-Ib-- kb/s as s-+- (7.32)

Theaboe cndiionis aviolation of the Bode-Horowitz coneition

(Ref[7-1),whih sys hatforreal systems, the following relation

must hold

f ~wk (jw)Idw =0 (7.33)

For this to be true, g(jw)k (jv) must have at least two more poles then
eq

zeros. Therefore, LO Regulators violate this condition. Does that mean

they should be ignored? No, it doesn't. Any real system will always

have dynamics we cannot model, arnd these dynamics will give us the

additional roll-off (7.33) requires. These dynan'ics will cause the piot

of g(jw)'k (jw) to enter the unit circle centered at -1 + 1O, where
ea

g'(Jw) Is the real system. This destroys our guaranteed margins. Tir

order to minimize the reduction in stability margins this causes, tihe

bandwidth of F(jw)k (j w) must be below the frequency where the ..-

uninodelled dynamics become significant. The above arguments can also he 6

extended to the MTMO case. We have already concludedI that this is one

of the requirements our system must meet, so this is no surprise. The

purpose of the discussion was simply to show that rhe guaranteed margins

are for the model of the system, not the real system.

%
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Appendix 7A

I) Show that the left-hand side of (7.16) is Hermitian.

'To do this, we must show that

QT R K(-lwl - A)-1BR- 1 T  + R"K(Jwl -A)-eB- }* (7A.1)

equals the left-hand side of (7.16). Carrying out the * operation

(7A.1) = fI + RKMjwl - A)-IBR- * I 4 r, K(-jwI - A)- BR T*

= [I T P RT(-jwT - AT)-IKTR 1 1 I + R Y(Jw T - A)-IBR-

= [1 4 R 1(-~jwI - A)-IBR-~1TfI + P. F(JwI - A)-IBR-  -

= l.h.s. of (7.16) Q.E.D.

2) Show that the right-hand side of (7.16) is of the form

T 4 Y ( ) .. -

To do this, define X(jw) as

Y(-w) (Jwi - A) -BR (7A.2)

so that

*.-T T-I
X (1w) = P-! (-iwT A ) (7A.3)

Now

I + X (lW)OXOiW)-i 
"-i-. -1--

I + R1 T (-jw - AT)-O(J
w l -A)-IBR-)

r.h.s. of (7.16) O.E.D.

S*.. -- .

-
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Appendix 7B %

All

Proposition: A A >, I iff U(A) 1 (7B.1)

Proof: If B is Hermitian (B - B) then there exists a unitarv matrix P

(P*P 1) such that P*BP Is diagonal (see Ref f7-21). Now let B = A A.

P A AP A(7B.2)

Prmut~lyng(7B.2) by (P ) and postmultiplving by P yiee~s

A A (P) AP =PAP >,I (7B.3)

Remember that A can be represented by

A = diag[X1, X2  X.,A (713.4)

There is no loss of generality to assume that X I *.. X 2 T,> 0,

since Hermitian matrices have only positive elgenvalues. Premultiplying

by xand postmultiplying by x yields

x PAPx ~X X X CC (71B.5)

Now, let's choose

X P (7B.6

L J

Then

xPAP x =o on .. iA- PAAP AA

I J

20

=2(A)~ 0 0... 11.=1(137

Therefore
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g(A) I O (B. 8)

This proves that

A A' > I =~g(A) >, 1 (7B.9)

Now, to conclude the 1ff proof, we must show that

2(A) >. 1 ~4A A >, I (7B.10)

Tnstead, we will prove the contrapositive

which is logically equivalent (see Ref f7-31 for a review of logical

proofs). This proof Is trivial -- replace ">," with "<" in (7B.3)-(7B.9)

and we hiave the desired result. This completes the proof.

N'.*
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A. USINC OBSERVERS TO RECOVER REGULATOR MARGINS

Tr this chapter, we will develop a method to "tune" an observer .*'*

(speciticallv, a Kalman filter) so that the guaranteed margins of the

regulator are nearly achieved. Obviously, this implies that the

guaranteeO nargIns of a system with an observer included are not, in

general, those of the regulator. We will start by showing that they are

not.

8.1 Non-Existence of Cuaranteed Margins for an Observer-Based System

A frrmal proof of non-existence of guaranteed margins for an

observer-based system is actually not necessary. Rather, all we need Is

a ccunter-example which shows that the guaranteed margins of the LQR do

not exteund to the observer-in-the-loop case. The observer we will use

is the standard Kalman filter, i.e., Linear Quadratic Gaussian (LOG)

control. The same type of results can also be shown for the case of a

a' general observer.

* Example

Consider the following state space description:

x=Ax B u r&

L~ +-

y Cx + n ri 1 (8.2)

[x]
z X i i (8.3)
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4J.I%
where E and n are Gaussian white noises with intensities Y(>O) end 1,

respectively. Without going into the details, we will let the sta'c.

weighting matrix Q be__

whee q>0,and let the control weighting R be

refresher, this means we wish to find the regulator and filter gain.

* given by (see Chapter 6)

u -K x

C c

-T -1T

0 PA+ A P + 0-PBR B P (

* and

x Ax + Bu +f(y -CA) (~Q

T -
K E C P (P. 1M)

f f
o A + T T -1I?1
0 A +ZA + 0 - EC R CEZ

If f
T

where Rf I (strength of n) and 0f = yr .Solving these eationF,

we get

K fO.2361 0.?3611 ' 2

I (P. 13)
0.23611

Note that with q =y, the solution matrices are dual (identical 'hut

transposed). The open-loop plant has two poles at -1, while tic

closed-loop LOG system has poles at

XIACL 1 -0.618, -1.618, -0.618, -1.6191 (O 'j)

8-2
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-ow we need to examine the stability margins of this system. Since

this is a STSO system, all we reallv need to do is fird these from Bode 'J-

or po or plots of the loop transfer function. However, we will follow

the rethod of Chapters 3 and 7 and find the margins by using gfT + KC.

insterd. You can verify for yourself (if you wish) that the results are .el

the same. Also note th-at since this Is a SISO system, KC = ;K, so the

margins at the input and output of thc- plant are the same. The

expressiei for K(s), the LOG compensator, was derived in Chapter 6. The

plot of 21l + KC] vs. frequency is shown in Fig 8.1. Note that

o 4) 4 = 11 + kp for a SISO system.

0

(/10

- , -4

Oc I 1 1 1 1"1 c

FPEQUP4Cy (RAD/SEC)

Fg p.I arT - VC1 vs. Frequency for a y I

8-3.. .
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Z I. From this plot we can see that

arl + KG] - 0.947 ( r

which is aby the notation of Chapter 3. Therefore, by (3.41) nnd

(3.42) 0.514 < GM < 18.94(.16S-56.500 < P~l < 56.500 (&.17)

which obviously violates the guaranteed margins we had hefore (see

Chapter 7).

Now, In an attempt to make the system "better", we can try to speed!

up the regulator and filter by increasing q and y to Increase K~ and K
c

This Is an ad hoc procedure often used to improve performance. tve u

let q and Y be equal (simply for convenience), and let them have a'ues

of 2, 5, 10, and 100. Fig 8.2 shows a superimposing of thte plots of

SjI+ KG] for these values of q =Y, along with q =Y =1. Note thnt

the infimum of these plots decreases as q = Y Increases, which Implies

the margins decrease. The margins are shown in Table P.1 for different

values of q and Y.

Table 8.1 Gain and Phaselfargins for Values of q and Y

q =Y GM PM
1 0.514 18.94 -56.50 56.50 .

2 0.546 5.95 I-49.?' 49.20
5 0.667 2.00 -29.0O' 29.0'

10 0.801 1.33 -14.20 16j.20
100 0.986 1.015 -0.8' O-PO

The table shows that arbitrarily speeding uip the regulator and filter

(i.e., increasing control power) can actually degrade the system f'nn a

P stability robustness point of view.
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1
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to

--\

6----------------------------------------------------- --- -------------------------- -

--------------------- -------------- ----------------------------------

q-1O

I Q-100

0 14 14Wk 4 4HHM II I IIHi I111111111 1 1 111111

rl. ij f.2 gr + VC1 vs. Frequency for q = y =1, 2, 5, 10, and 100

let's~ take a Quick look at an Interesting point. Tn this system,

the reytilptor moves r~he open-loop poles from f-1, -1) to f-0.618, -1.618)

for a = 1. One may argue that the Improvement afforded by the control

systr. here Is minimal. First, that's not the point of the example.

The point Is not to design a "good" optimal controller -- rather, we

simiplv wninted a counter-exrample to show that there are no guaranteed

margin.- . Not only are there no guarantees, the margins verc shown to be

arhitrnirilv small for certain controllers. Secondly, If we chan~ge A to .

-A In (P.1),, which makes the open-loop elgenvolues f+J, +1), the

8-5



closed-loop regulator poles for q I are again f-0.618, -1.618).

Obiuly hssamakdI tpoemn from the open-loop svte..I

However, Fig 8.3 shows a plot of 2G[T + KG) for this system, which s

inf Ll + KCJ 0.0528 k- - r

0.95 < GMY < 1.06(P])

-3.00 < PM < 3.00 (8. ')fl)

S. which are miserable.

4%4

.9

. ---------------------------------------------- ---------------

Mr-

.5--------------------------------------------------------------------- --- --------------- 4

5z - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

.9. ~Z

101 10 1 1 w il0 1 001

FREQUENCY (PAD/SE:)

Fig 8.3 1 11T + KCI vs. Frequency for q =Y - ,with A -i-
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This hIghlights one of the biggest problems with LOG control in the past

It has the atrcinfbig____l"adgarnedclsdlo

properties, which we showed had excellent margins. In the next chapter,

we will couple this with the loop property ideas of Chapters 4 and 5, in

order to ircorporate frequency-domain specifications.

S.2 Relationships Between Full-State Feedback and Observer-Based

* Feedbark

T-irs-t, let's look at a block diagram of a general structure

full-state and observer-based feedback system. J

--- CONTROLLER ~ 1

K Fig 8.4 Full-State Feedback

6'

0
2* 8.-7



%* %

CONTROLLER

H2 B

Fig 8.5 Observer-Based Feedback

In Fig 8.4, note that H I and H 2are a feedforward one. feedback pain

*matrix, respectively. Tn Fig 8.5, H and H. have the same meaning Ps

above, and K is the observer gain matrix. Now we will state and prove R

three properties concerning the loop properties of the two systems.

Property 1 -The closed-loop transfer matrices frolm command Fipna.s

r to states x are identical In both implementations.

Proof: For the full-state feedback case,

x = I)Bu" = Dft' = (PBu (8.?])

since all. loops are intact (i.e., no break at X or XX). Fere, D Is used

in place of (sI - A) Notice that

ui=T (r (X.)2
1 - 2x

Substituting (8.211) Into (8.22) and simplifying yields

u = 1I1 (r H H24Bu)

or= H1 r H H 04~u (P. ?3)

8-8



it - (T H if U)" R r (8.24)

Substituting (8.24) Into (8.21) yields

x 0=$(1+ H1 P B)' -1 (8.25)
1 2 H1

For the observer-based case,

x= OEu" = 4DRU' = OBU (.6

since, once again, all lcops are intact. Notice that

x (Bu' + Yly-C)) (8.27) :
* and

y= Cy. (8.28)

so that, substitutinig (P.28) and (P.26) into (P.27) and simplifying we

get

= D(BU, + KCX- KCA)

= VBu' + KC4Bu" - KC )

= 4(BU' + KCBu") - dC (8.29)

or

x= (1 + 4C) V4BWi + KC(DBu"I (8.30)L

Now, Rince u' = u" In this case

= (T + OYC) - 40 + XC"R)u' -
S(I + WC) (D + ID~YROB1'

= (T + WOC (T +WO4B

7n1~ ~cs = 4'Bu' (.1

Tn t', aseu' alsoj equals it, so that

x = u (8.32)

Tonkirp it, the control law, (.3

i (r - 14 x(833

ined sij 1 sttutirp (A.12) Into (8.33), we get%

u H~ r - H U B (P. 34)

8-9



or

U= (T + P P, H r

Now, substituting (8.35) into (8.26) we get

x - OB(I + P~ H OB) H Hr QP.36)

which Is the same as the full-state feedback result in (8.25). V'HI

Property 2 - The loop transfer functions from control signa c Wi to

control signals u (loops broken at XX) are Identical in both

* implementations.

Proof: To calculate loop transfer functions, we assume external input's

to be zero; therefore, r 0.~ Note that here, u? u", but u' 0 it For

* the full-state feedback case,

u- -H H x (37)
1 2

x = 4Pu" (P Bu' 01. 38)

and combining these

u =-H H I>Bu' (Q.39)
1 2

For the observer-based case,

u =-H H x A.0
1?2

Substituting (8.31) into this equation (note that (8.31) Is valid here

since the only assumnption at that point is u" u'), we get

u -P H4 (DRu' 0.41)
1 2

which Is the same as the full-state feedback result in (P.39).. OFT)

*Property 3 - The loop transfer functions from control signals u" to -

control signals u' (loops broken at X) are, In general, different.

Proof: Note that here, u' =u, but u" 0 u'. For the full-state

feedback case, .

and

8-10
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l'.Z' u' = u = - Hi *' (8.43)
1 2

so that

u' - H- - ? (BU" (8.44) W.

For the observer-based case, from (8.29) we have .

X (Bu' + KC Bu") -W (8.45)

er

A
(I + KC)x = 4(Bu' + KC4Bu") (8.46)

Yote that this Is equal to

( + K (Bu' + KCOBu") (8.47)

Notice that (D must exist because .-:

(D [(sT - A)-I sI- A (8.48)

,ow, premultiplylng both sides of (8.47) by (D-I + KC)_ - we get

S((-1 + KC) (Ru, + KCOBu")

_ (T + MKC)J (Bu' + KCOBu")

(I + ,"C) (Bu' + KCOBu") (8.49)

Now we get clever. From Chapter 2 of these notes,

(I + -1GG F F 1, C (2.21)
C2GIF 2F) = G2G1 G2GF 2 ( FG 21 .2  I 1

Deflning C2C = 0, F C, and F = K, we can see that
21 1 2

(I + KC)- ( = - K(I + CK) C (8.50)

Substituting this Into (8.49) and simplifying yields

D= - K(T + C4DY) C$(Bu' + KCDBu") -

. Bu' - PK + CIK) OD'B + DKCBu"

- C(r * CDK)-CcKCcPBu"

= DB(CR) -1(C4B)u' - W(I + CUK)-I(OB) U,

4 + CK(Cr1B)u" - K(I + CU1) -Cr(rlAR)u ' "

-D [B (CDB)-  F (I + C(W) - I DDRu'

-
-

" ~~8-II1'1"'
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-(C1B) • -t4O= 4 r[B~E - K(I + C4 K)IC Bu' .' .'

+ OK[(I + COK)- (I + CK) C0IC11ctu"

0 [B(CB)-1 - K(I + COK) -1]CBu'-

+ -[K(T + COK)-1 1C-u"('1)

Note that the only assumption we have made in this development Is that -'%

(COB)-1 exists. Obviously, COB is the plant transfer function;

therefore, we have assumed the plant to be square and Invertible.

Later, we will generalize this to non-square plants. The Invertihilty

requirement implies that the plant must have no zeros in the right-half

s-plane (i.e., it must be minimum phase).

Now we can write

u' = u = -HIHX (8.52)

from Fig 8.5. Substituting x from (8.51) into (8.52), the result is

obviously not equal to (8.44) (the full-state feedback result), in

general. OED

Now let's look at the ramifications of these three properties: -L

)roperty 1 - Input/output properties are the same. This is true hecouse

we have assumed a perfect observer.

Property 2 - For loops broken at XX, the robustness, relative stabi.tv

properties, and disturbance properties are the same. This means that if

this set of properties is guaranteed to be good in one implementation,

it is guaranteed to be equally good in the other.

Property 3 - For loops broken at X, the above three properties art- lot

the same for each implementation, in general. Cuaranteed "goodness" in

one implies nothing for the other.

Perhaps you can see the punchline now. The loop-hreaklng point XY

is internal to each of the compensators -- assuming uncertainties here

8-12 . . .
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does not make sense. f we do, we are saying that we don't know If we,.

can build the compensator we design, hut we do know the system we are

designing it for perfectly. This is the reverse of what we have "-- "

assumed. Rather, we need to examine loop properties when breaking at X,
% .

which is a point external to the compensator and at the plant input. "..

Loop properties at such a point would be related to [IT + K(s)C(s)]

-- note that for the full-state feedback LQR case, we have proven

guaranteed "good" properties for this return difference matrix in "

Chapter '. Unfortunately, Property 3 does not allow us to infer that

these properties hold for the observer case in general. Therefore, the

bottom litte is, once again, observer-based feedback does not have

guaranteed margins for Prbitrary observer gains.

You may have noticed that we keep saying "in general" when we talk

about Propertv 3. Are we implying that there is a way to make the loop

properties the some for loops broken at X? Yes there is, and we'll show

that next.

F.3 Fouating Loop Properties to Recover Robustness

Fasically, we have determined that the main problem with using

observers (remember that a Kalman filter is an observer) is that the

loop properties are different from the full-state feedback case when

breaking at point Y In FPigs 8.4 and 8.5. Point X Is at the input to the

plant, where we know the full-state feedback case has excellent loop

properties when the feedback gains are chosen by solving the LQR

problem. What we would now like to have is a way to recover these

properties when using an observer, by selecting the observer gains

properly.

Let'q compare the two loop transfer functions. For the full-state

8-13
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feedback case *~

i'= I -H 2 x 1F.43)

x = $~u" (P.42)

while for the observer-based case

= -H _R PC B (8.52)

x ([rB (U B) -1-K(T + COK) -1(~u

+ I)[K(I + M$K) 1 C0Bu"(.)

Obviously, for equality of loop transfer functions, we need the transfer

functions in (8.42) and (8.51) to be equal. Since we don't want aW

term on the right-hand side of (8.51), we can let

B (CIDB) K( +(P) 153)

so that the first term in (8.51) vanishes. Fquaticr (8.51) then becomes

A -
-x =P ~B(0DB) 0D Bu"

= )Bu' (8. 54)

3This is what we want! That Is, if we can choose K so that (8.53) holds,

then the loop properties with loops broken at X will be the same for the .

full-state and observer-based feedback cases. This means that any

guarantees that hold for the full-state feedback case will hold for the

observer-based case as well.

Next we need a way to choose K so that (8.53) will be satisfied.

To do this, we will try to find K as a function of a scalar parameter q

* such that (note that this q is different from the q in section 8.1)

K (q)N:
BW as q-* (F.55)

* q K

where W is any nonsingular matrix. Then
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KfI + COK]- I = q[1 + COK(q)] -  + K .

-~Bf4W 1q -q -1 q
B ICO1 BIN [C-B1 -  ICDBI -  as q-c (8.56)

which is what we want in order to satisfy (8.53).

Closed-loop stability of the overall system with an observer

in the loop requires that the observer error dynamics be stable. We can

assure this by requiring the observer to be a Kalman filter for some set

of ncise statistics. First, we will assume that r, the process noise

distrihution matrix, is identity. From Chapter 6, Kalman filter gains

are given by (here with our scalar parameter a Included)

Kf (q) = ()CTRf -  (8.57)

where (q) Is the solution to the filter P Iccati equation

n = AE(q) + F(q)AT + 0f(q) - E(q)CTRf-ICE(q) (8.58)

Note that we have chosen Qf to be a function of q also. As in any

nIlman filter problem, we must have Qf -fT >0 and R- R T >, and the
pairt, iA, 0f j and [C, A] must be stabilizable and detectable,

re spec ti velIy. .i"2

n the typical Kalman filter problem, O and Rf are process and

mersurepnt noise Intensities, respectively. Pere we will alter that

interpretation slIghtlv. Let 0 and R be the actual process and
0,0

measurement noise Intensities, and define the Rlccati weighting matrices

Qf(q) = 0° + q2BVB (8.59)

oP = P (8.60)
0

where Is any positive definite symmetric matrix. Vote that the

measurement noise weighting is taken as the noise intensity Rot while

the prrcess noise wieighting has an additional term added to Q0. This

8-15-..
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term can be thought of as additional fictitious process noise injected

into the system through the inputs to the plant, where we have as~nired

uncertainties anyway. Also note that, for q = 0, we have the stardard

Kalman filter. Next we will examine what happens as q approaches

* ~Infinity. '

Substituting the weights in (8.59) and (8.60) into the filter ..

Riccati equation (8.58), we get

T 2 T T-
0 =AE(q) + F(q)A + 0 + q BVB - (q)C R CE(q) (R.61)

0 20

Dividing both sides of (8.61) by q we get

E(q) E(q) T (q) T 1 (q)
0 A A(-2- + (-2 -)A T+ +~ BVB T 2 (- -)C TR IC( -) (P.62)

q q q q q

By the development In Appendix 8A, for a minimum phase system (i.e.. D

has no right-half plane transmission zeros) with at least as mnany

Z:(q)
inputs as outputs, as q~~ in (8.62), ---- 0. Therefore, the first

q

three terms on the right-hand side of (8.62) becor'e small, ane

2 (q) E ~q)
q (--) C R C(VB) as q-6-3

q q

From (8.57) and (8.60), we see that

K f(q)R0K f(q)T = I(q)CR 0 IR 0[E(q)C TR 0~

T -1 -
=[E(q)C R 0 R 0(R0  CE(q)l .

E(q)C R -1~ q (R.64)

so that

irKf(q)R Kf(q) 2 (q) T 1 (q)

2 = 2(~-) R 2(~- (8.65)
q q q

Substituting (8.65) Into (8.63) yields

K (q)R K ( T
f o f~q T

BVB as q c (P.66)
q

8-16
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Ve will now claim that solutions (remember we are trying to find K W)

do ~ of (8.66) must be of the form%

* 'f a,__ BV R *as q-*0 (8.67)
0

To prove this, we substitute (8.67) Into the left-hand side of (8.66)

and see that

X f(q)RoK f (q)-~ vR ) B )T

- BV R - R R _'50B T
0 0 0

= BVBTa

which is the right-hand side of (8.66). One more step and we're done.

If we nnw define W as

V OR (8.68)

from (8.67) we will have,

Kfq -- W as co (8.69)

where 'P Is guarnnteed to be nonsingular by its definition. Equation

(8.69) Is exactly equation (8.55). Therefore, choosing the filter j46

weight!; as shown in (8.59) and (8.60) will yield observer gains that

satisfy (8.53) Ps n-~ and therefore the loop properties of Figs 8.4

and 87 vill be Identical with ioops broken at X, as q-o- .

TA t '-- add one more thing before making some comirents. If the plant

*contanns non-identity process noise distribution matrix r, so that

AY + Bu + r (8.70)w

where

Tr Ut) (T) I =0 (t -Tr (8.71)

thev the weighting matrix f becomes

T 2 T
0 (q) F r + q RV1R (8.72)
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This should not be surprising since the standard Kalman filter would %

have the r term.

Now let's take a look at what we have. By choosing our observer to

be a Kalman filter, with weighting matrices as shown in (8.59) and

(8.60), we will asymptotically recover (as q--.oo) the loop properties

of the full-state feedback implementation with loops broken at the input

to the plant. If the loop properties of the full-state Implementation

are good, they will also be good at the input to the plant when P Valman

filter is placed In the loop. Since we have altered the filter's

weighting matrices, we may ask if it Is still a Kalman filter. The, .- ... . -"

answer is yes, but with strings attached. For q = 0, the filter ,

described here Is exactly the typical Kalman filter. However, It has ro

loop recovery properties at all. As q is made larger, the loop

properties become closer and closer to that of the full-state feedbck

case. However, the process noise weighting becomes increasingly

different from the assumed process noise intensity, still yielding a

Kalman filter but for different noise statistics. Thus, we have a

trade-off between loop recovery and accuracy of the filter. This i,,

best shown in a simple example, which we do next.

8.4 Example of Loop Recovery

Consider the simple single-input single-output system described by

(Ref f8-31)

= Ax + Bu + F + (P.73)-

y Cx + n [2 lix + n (P.7.4)

W,( ) = E(n) - 0 (9.79)

E[ (t)T (T)] E[n(t)n T(T) = 6(t - T )

0 = R = 1 (P.76)

-o .
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The open-loop transfer function for this system is given by *4

C(s) = C(sT -A)- 1B (8.77)
(s + M)s + 3)

The cci'trolier we will use Is an LO Regulator which minimizes

lim IT T T3 ET I[z z + u R uldt) (8.78)

where u.e will let

z Ux- .45[,35' l1 (8.79)

so that

TF
1 H HV= 80 J~- 1(8.80)

and

=1(.1

The unnrthodox choice of H was made so that the resulting optimal

control Isw would be

u = -Y x [50 M~IX (8.82)

which p~roduces the closed-loop regulator poles

xL -7.0 + 12.0 (8.83) .

R~ememnber that these come from detrsl -A + BK 1=0. In order to be

consistert with the notation of Figs P.4 and 8.5, we let 11, I and

1"=K . The loop transfer function for the regulator Is given by
- C1

K (FT - A)- B. This was shown In Chapters 6 and 7. Figs. 8.6 and 8.7

show n Bode magnitude and a polar plot of this transfer function. We

show only the mcgnitude plot as this Is all we would have In a 141M0

example (using sinp ular values); note that we could not generate a polar

plot for MWMO.

!6
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Fig F.8 shows a blow-up of rig 8.7 at hi~gh frequenc". Note that the

plot does not enter a unit circle centered at -1 + In, and therefore has

the promised guaranteed margins. Tn fact, the gain and phase margirs . .

here are O< GM <- and -850 < PM<80

30

2.44.

2,11

-20

.0.9

Fig8. hih-reqeny ortonof heFul-Sat ReultorQ.to

'Design

1 Now sinc the -- a -smpio of-- avilbiit of all st-t- for f-eb-c ------- s-----
unrealistic,~~~~~~~~-1 wewl0d netmtrt ecntuttesaern

* a Kalm~~~nfle. Eutot.2 ilteeoermi tesm x~t. *
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r 1 1 1 -611 (8..-4)

and

Rf =R 1 (8.85)

This produces the filter gain matrix

30o
K f (8.86)

wit f Iter poles

f -7.0 * 12.0 (8.87)
CT.f

(the same poles as the regulator). Remember that these come from

detT q - A + KC] = 0. The loop transfer function for the system with

the filter In the loop (i.e., the LOG loop) Is K(s)G(s), where K(s) is

gver, 
o °

Y(s) = 1 (sl - A + BK + KfC) K (8.88)

Apq~n, this was shown in detail in Chapter 6. Note that since this is a

STSO system, K(s)C(s) G(s)K(s). Figs 8.9 and 8.10 show the Bode

magnitude and polar plot of this LOC loop transfer function.
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Fig 8.9 Bode Magnitude Plot of the LQOC Loop
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.251

.1.5

1-2:

- -4

-900

Fig 8.10 Polar Plot of the LOG Loop

Notice that while the bandwidths of the two systems are only slightly

different, the margins for the LOG system are much worse. Specifically,

the phase margin has been reduiced to 15". From. a realistic viewpoint,

note thi-t the TOG loop does have the required -40dB/decade roll-off we

discusscri in Chapter 1,which the regulator loop does not. Therefore,

we woul 1 like to have a way to retain this 2-pole roll-off property

while ,pproachinp the desirable margins of the regulator.

7o do this, we will use our recovery technique. This example was

specipllv chosen to show the remarkable features of this technique.
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Note that our Kalman filter produces an unstable corpensator -- t1 c

compensator poles (poles of equation (8.88)) are

TK = f-42.7, 18.7) (E.P9)

This accounts for the -180" low-freauency phase angle in Fig 8.10. This

happens quite often when using LQC comnensators, and in many cases it

should happen. Consider an open-loop system with pole/zero locations as

shown in Fig 8.11.

Im location of required
compensator pole

Re___"-" 
.'__R

Fig 8.11 Open-Loop Pole/Zero Locations of a System Requiring

Unstable Compensation

Obviously, a dynamic compensator with a pole in the rIght-half plane

must be added to move the locus into the left-half plane. In our

example, unstable compensation seems unnecessary since the open-ic n

plant is stable. However, since all four branches of the locus riims go

through the point -7 ± j2 at one value of loop gain (specificpllv, loop

gain 1), unstable compensation is necessary to achieve this.

Therefore, unstable compensation is "our fault" since we asked ici those

root locations.

Now, we let the O matrix take the form as suggested in (P.7?)

T 2 BV T  . .-"" --

Of = r +q BV-

= (I)!35 -611 + q2[(1)f I .

8-26

"-"- " " 5 " '-." ', " ' ._ .-:-.''.- '- J' -- '-,- " ' "" -""'--''. "" - "- - ". . """. -.-"" ""- "" . . . ." ." • . . -."- -.



where q' takes on increagingly larger values. Note that since we are %

free to choose V, and since It's a scaler, we choose it to be unity. We

have already seen the results for q =0; they are just the optimal LOG

loop (Fig 8.9 and 8.10). Ffrst, we'll look at polar plots of K(s)C(s)

as q- ~~ since they show what's happening very clearly. Fig 8.12

shows the plots for q2  0, 100, 500, and 1000. I.

5,0

4.5.d

54.

-900

-5

51.

27

0 . . . . . . .



242

150 12-30

-500

250000 and fullattt

coninu to0 inrae2oeta oehr ewe '=30 n 06

22As q increases paqt.4096,tepo grw lrerad agruni t

soepit (.13rod Plt fo 750) th sy0te, 2ecom, 36ype 406 and0the

become pcen-loop tae o othate toge lrqer nd ption mrgis t h

0coaise bt intreasery lNrte thagtdmehe. Astee q' =s 3n600 furth9,th

tplotche shrikutlate so tha000 it e celowstel reamble rel -):Is.

As Th abovcesced b hvio 4096 th pot r w ilre xpandc byrlookntilj ;th

comepntrpoed (rot of0) dthes te beoe Typ 1 K 4 ) ad thoen

a8-20 xs u tavr ag antd. A sicesdfrhr h
plot. .. . . . .. . . . .. . . .sh ins un i t*_00 tv r lsl eebe u l ne

The~~~~ ~ ~ ~ ~ aboeescibdehaioi_____asly_______yooing__th

co pe sa o poles (roots _ __of__ ______ __A_+_ ____+_ _V_____0),__ __shown__in



* .~jj,~ ~ ~ - . . • .... * -

Table 8.2 Poles of the Compensator as v -- ,'

q Poles of V(s)

0 -42.7 18.7
i00 -43.5 16.7
500 -47.4 10.4
1000 -52.5 7.0
2500 i -66.0 3.o
3600 -74.6 1.78
4096 -78.2 1.4
5000 -84.3 0.-
6400 -92.0 0.3
8100 -102.0 -0.10
10000 -112.0 -0.44
4000P -210 -1.57 --.

?5000R -510 -1.93

I 10 -10,010 -1.999'

i2

"low we can see what's really happening. As q Is Increased, the

unstable compensator pole starts moving toward the left-half plane,

(:ausing the polar plot to grow. As q increases further, the unstable

pole approaches the origin and the plot becomes very large. At some

29
value c, q" (between 6400 and 8100), the unstable pole moves to the

origin, and the system becomes Type 1. For a slightly larger value of

2
q the compensator becomes stable, changing the system back to Type 0

and mo,.,Ing the low-frequency part of the polar plot to the 0° line. As

q eets very large, the previously unstable pole moves toward -2, the

ope-hcop (transrission) zero. This causes the polar plot to shrink,

and for ql - 250000, the polar plot of the LQG loop looks almost

identical to that of the full-state LQ regulator, Note that the other

cowpers;ator pole simplv becomes faster and faster (moves further into

the left-half plone).

Now let's look at the Bode magnitude (singular value) plot.

e Remember that In a MIMO problem, this would be our cnlv plot. Fig 8.14

show t~e nagnitude plot for o = 0, 500, 2500, P100, 250000 and full

starte.-. "-

"-- 8-29
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Z- -L-z-s-v- -.- -

60 V_____

.2
q -8100

4 0 -- - - -- - - - - - - - - - - - - - - - - - - - - - - --- - -
N . q 2500 full state

20

q0.

0

z full state

~-20 ----------------------------------------------------------------------- -------- ----------

q 2.250000

-80

1 0 1 c, 1000

FPEOLJENCY (PAD, SEC)

2
Fig 8. 14 Bode Magnitude Plot for q ,0, 500, 2500, 8100, 2500oc,

and full state

2 -*As q begins to increase, the low-frequency region begins to approach

* full state, while the high-frequency region remiain~s virtually uncb :npged.

2As q nears 3000, the low-frequency region almost matches full state,

*since the compensator pole at +2 looks like one at -2 from a magnitude

* viewpoint. As continues to q' Increase, the low-frequencv region also5.

*Increases, diverging from full state. Once q is Iarp. enought "o rio0ve

the compensator pole into the left-half plane, the low-frequency

response lovers until It nearly matches full state. At the some time,

the high-frequency portion of the plot approaches that of full statc.
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Note thct at q- = 250000, the LOG loop nearly matches full state, except

at very high frequency. Here, the LOG loop exhibits an additional

-?fdB/decade roll-off, Pince it has a two-pole roll-off rather than full

state's one-pole roll-off. Thus, we have met our objectives. One final"..

point of interest is that recovery is achieved with no increase in

bandwidth, which is obviously desirable.

.v will conclude this example and chapter with two points. First,

in order for recover- to occur, the poles of the compensator must

approach the transmission zeros of the plant and infinity. It is easy

to see that this is happening by looking at Table 8.2. A slight

modification of the development in Appendix 6A or the proof given in

Refs [-l1 and [8-21 shows that the filter poles also move towards the

plant transmission zeros (or their stable images) and infinity as q .

Thus, the behavior of the poles in this example is typical. The optimal

(c=) compensator will net always be unstable; usually, it is not.

')f it is stable, the "overshoot" behavior seen in Fig 8.14 will not

:"-" ~occur.'.-""""

Secondly, we need to remember that the filter performance degrades

as q get,; large, so that a trade-off occurs. Ref [P-3!, where this

example is taken from, shows values of the error covariance matrix

(x-")T fo seea2vle
Fr(x - )(x - x)] for several values of q For q = 10000, the error

('ovariancc matrix entries are 3 to 5 tires greater than these of the

optiral (q' = 0). WhethEr this is acceptable or not depends on the

specific application, and ,n the i'portance of robustness. We simply --
V..

want to point out that the trade-off exists and should be considered

when t:Electlng the value of q

8.
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Appendix 8A

First, we will state two theorems from Ref f8-1, pp. 306-307 and p. %

370-371. These were first proved in Ref fP-?i. The proof will b.

omitted here, and interested readers should consult Pef [P-?1 for te

details.

Theorem A: Consider the linear, time-invariant, stabillzable 4rnd

detectable system -..

. = Ax + Bu

z =By (PA-2)

where B and H have full rank. Consider the performance index

['zT T
J [7 (t)Qz(t) + u (t)Ru(t)ldt OhA-3)
0

where Q >0, R >0. Let

R pN (?A-V'

with N>0 and p a positive scalar. Let P be the steady-state solution
P

of the Rccati eqtation

T 1- -IT-0=H QH-'TBN' Hpp + AP + p A (PA-5

Then:

1) The limit

Jim = p .... )
P-0 p o

exists.

2) If dim(z) .< dim(u) P = 0 Iff all the transmission zeroF of
0

C'(s) = H(sJ - A)-IB are in the left-half plane.

3) If dim(z) > dim(u), then Po 0 0.

Theorem B: Consider the linear, time-invariait, stabilizable and

detectable system

Ax + Bu + (PA-6 '

v Cx + n (,/-7.
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where C has full rank, and n are zero-mean white noises with

intenrities 0,>0 and R ph > 0 , respectivelv. Let 7 be the

p

steadv-Ftate snlutien Cf the filter RIccati equation

" 1= CT, - C AE 4 AT (-.- )

pp 0 P P

Then:

-o The lioit

in.

exists.

7' Tf dit.(y) .< dlin(u), ELI 0 iff all the transmisrion zeros of

r-(s) C(sT - A) -1B are in the left-half plane.

3) If dim(v) > dim(u), then E # 0. i%

For our current application, Theorem B is the one we're interested

in. Theprem A was given since this is the one that Is proved in detail

in Pet f8-21; Theorem B is its dual. We want Zo 0, and to get this we

rust have at least as many Inputs as outputs, as well as C(sT - A) B

neing ninrirum phase. row we must alter Theorem B to our notation.

f-irt, we want 0 + q BVB and R = R , where q- , Notice
0

that r~iimizingt,,,.,.

T1 J T T

1 o [xTlx upoRIU dt ... .

]= " ITo T'""

p olrX QlX 4 uP1 uldt (PA-9)

is; the nne as minimizing

[_ x x + u Rluldt (.A-10)

since multiplication by a positive scalar does not change the

ninimlzatlr. Now let - = QL* Therefore, letting p-0 is the same as

lettinp ,-- " . ince we are free to choose Q and R l , let

o + BVBT (8A-11)] 2 p _,

8-33
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Then

Q -q 2 + q 2 BVB T (F-A- 3)

R - R =R 0(RA- 14)

whic is hatwe wnt.The Riccati equation iT, (PA-R) becone~. equet (on

(8.61) and Z 0 if C(sI A)- B Is minimum phase. This allows u.-: to

conclude

as

8-34

.......................................



V -- ILNsJ1LV.IV1 IC VL-"

Chapter F References

fp-11 1!. Ywakernaak ane R. SIvan, Linear Optimal Control Svstems,
Wilev-[intersrlence, New York, 1972.

% fr21 11. Kwakernaak are P. Sivan, "The Maximally Achievable Accuracy of

Linear Optimal Regulators and Linear Optima] Filters", IFEF Trans..4
Auto. Control, Vol AC-17. No 1, pp 79-86, Feb 1Q72.

fP-31 J.C. Doyle and C. Stein, "Robustness with Obsezvers", IEFF Trans.
Auto. Coptrol, Vol AC--24, No 4, pp 607-611, Aug 1979.

r8-41 I.C. Doyle, "Curanteed Margins for LOG Regulators", TEFF Trans.
Auto. Control1, Vol AC-?3, No. 4, pp 756-757, Aug 197P.___

8-35



q. PUTTING IT ALL TOCFTHER - THE LINEAR QUADRATIC GAUSSIAN WITH LOOP
TRANSFER RECOVERY (LQG/LTR) METHODOLOGY

So far we have discussed what a good multivariable loop shape T -_

should be, as well as a method which recovers the LO Regulator loop .

shape when using an LOC compensator. Now we need to tie these ideas

togethier to produce an overall design methodology. Actually, we will

* develop one method which has two "versions", depending upon where

uncertainties in the system are assumed to be. We will start by

restat-inr, the LOG problem, but adding a few new assumptions.

9.1 Loop Properties at Various Points in the LOG System

The system dynamics are assumed to be in the form

= Ax + Bu + r( (9.1)

y = Cx + n (9.2)

where dim(u) = m, dim(v) = r, and and n are Gaussian white noises. We

wish to minimize the performance index

Eflim T(zTz + puTu)dt (9.3)

where

=.X (9.4)

Is a e .Ored response equation and p is a scalar. There Is, no loss of --

peneriji ry In assuming this performance index over the "standard" ..

quadr,,ric Indey

1ir I T T T.T 0 (x Q X + u R u)dt) (9.5)

TSubpr toting (9.4) into (9.3) yields a 0c matrix given by 1F H, which can

produc, 2a desired symmetric positive senldefinite Q." Obviously, any

l matrix may be written as pN c , where p is a scalar and N is symmetric
c c C

posltir definite. Looking at the Riccati equation

O=PA + ATp + 0 -pBW -IBTP (9.6)
c P c
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7.- V. s- . .

ye can redefine

B BN7
c. .

where N is the square root of N c (i.e.. N1 N c N~ ). Therefore,

Rc = pl as In (9.3) is general. We will not use the ""on the B

matrix as in (9.7), but will assume B has been modified If so desired.

The solution to (9.1)-(9.4) is given by

u =-K x
c(

where

Kc TB ~P (0.9)

and P is the solution to the Riccati equation

T T iT0 =PA +A P +HH-PB-BP 0.10)

The state estimate x"Is defined by

x = A 4 Bu + Xf~ - x ('

where

I A+~T +rT IT(13

and ZIs the inteniy o the prcelt ie ict whuaihan isopltv

general. pI is the intensity of the measurement noise n, which is

*general if the non-equal, non-identity portion of R f is absorbed into C

similarly to the development In (9.6) and (0.7). That is, let any R be

written as 1jNf9 and redefine

C N C 914
f V-i. .

Again, we will omit the ".'in the further development.

Now we need to draw a block diagram representiltIOn Of the ah'Ae

equations. Fig 9.1 shows the block diagram that's most convenient for

our development.
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Now let's look at loop transfer functions at various points In the

system. Specificallvy, we will find the loop transfer at points CA, (9
(Dand®V-

Point (A) - For convenience, we will use a to denote the signal

just before the break at point CA), and a' to denote th'e signal JuF~t

after. Remember that In calculating loop transfers, we assume that all

external inputs are zero. First, we can see that

a = -v (.5

From (9.1) and (9.2),

y =C(sI -A) Ru = CBu (9. 16)

and from (9.8) and (9.11)

u -V -K (si A + BK C K fC) K (9.17'.

Substituting (9.16) and (9.17) Into (9.15) we have

a =C4BK (sT -A R K +~ K C) ' y(.9c c f KY(.8

Notice that

v=-'(919

Therefore, if we use our standard notation

G(s) = )B (9. 20)

and

K(s) =K(sI A +BK + KfC) Kf (9.?1)

(9.18) becomes

a =-G(s)K(s)a' (.2

so that the loop transfer function T (S) is
A

TA (s) = G(s)K(s) (9.23)

Point BJ-Using notation similar to thrt oit point CA),

b v C (M. 4)

Notice that-
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x = 4JBu + F b'] (9.25)

so that using (9.16) and (9.25) in (..4) we get

b = C u - CVBu + K b'. 
lie. 1.

f %'

= C4Bu - CIBu - COK b'f

-C tf' (9.26)

Therefore

T (s) = CK (9.27)
P f

Point Cc, We have actually already done this point and point (f"

back in Chapter 8 (they were points XX and X, respectively). To be

consistent with our notation, we will repeat them here.

c -K X (9.28)

NotIce that

x= NBc' + Kf{y - C}]'

453c' + OKfy - 4DKfC (9.29)

* so that

= (T + KfC)' r Bc' + IKfl (9.30) "- ...

Looking at Fig 9.1 we can see that

y= CBc'

so that

= (I + OK fC) IBc' + OK fCIBc']

(I+ cqfC) [I + (!.KfCOBc'

=fc' (9.31)

Substituting (9.31) into (9.2P) we get

c F-Kc OC (9.32)
c

so that

C = Kc 
(9.33)

Point (I) - No point Iii drapging this one out. Here

9-5
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*~~P jr .-

d Au

=-K(s)y ''

=-K (S) C(s) d' (9.14) 1W5k

so that

No le' T(s) K(s)C(s) (9.35)

Now et'ssummarize and look at the significance of these four loop IJ

transfer functions.

1) The loop transfer function obtained by breaking the LOC loop at *. -

Ipoint is G(s)K(s). Note that this is equivalent to breaking the

* loop at the output of the plant.

2) The loop transfer function obtained by breaking the LOG l~oop at

point ru), is C4K. Repeating (9.11), we see that

9~A~Bu + K yC (9.36)

The filter operating by Itself would be trying to produce an output y

which closely resenibjcs the input y. It Is therefore logical to define

the filter output by

A A(07
y =Cx (.7

Fig 9.2 shows a block diagram of the Kalman filter.

No-,

Fig 9.2 Block Diagram of the Kalman Filter
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Obiusy thi Is th optase tpinnteLGsse.B

)The loop transfer function otie the filteriig therf e give by o (rmebet

poit I isK Il. Nte rn Chapter 7 ths Kc s h loop transfer nto a

fnto ofthe saReuatrmeih a guaranteedex len robustness poete ORgltr

properties.

4') The loop transfer function obtained by breaking the LQG loop at

point P Is K s)~B . Note rmthate thi tha Kqv n to is rtealoop taser loop

futtheinpuf te te Rpglator hc a urnedecletrbsns

Here's where we start tying things together. In the last chapter,

we developed a method for choosing the filter weights so that the ioop

transfer function at point y D) recovered the properties of point ,CI.

A dual procedure exists for turning the regulator weights so that the

properties at point y~are matched with those at point QO. We will

* call both of these procedures loop transfer recovery. Basically, the

overall design procedure consists of two steps, as follows:

Ste~p 1 - Design a full-state feedback law with desirable singular f

ftvalue properties (these were defined In Chapter 4) using the regulator

or filter.

Step 2 - Recover these full-state loop shapes via one of the

recoverv procedures.
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Obviously, the designer must first choose which procedure to use.

This is determined by where uncertainties are assumed to enter the '.

system. If the modelling of uncertainties is reflected to the output of

the plant, we do a full-state Kalman filter design and recover with the

regulator. Conversely, if the uncertainties are modelled so that they

enter at the plant input, then we design a full-state LO Regulator and

recover using the Kalman filter. Next we will go through the details of

each procedure, adding some new development to simplify the procedure of

designing the full-state loop.

9.2 LQG/LTR Design Breaking the Loop at the Plant Input

We will start with this procedure since we have already developed

the details of the required recovery procedure in Chapter F. First, we

must design a "good" full-state LQ Regulator loop.

9.2.1 Full-State LQ Regulator Design

We have already defined "goodness" using singular value plots in

Chapter 4. Going back to Chapter 7, from (7.16) we have

[I + Rc 5 c ( - J w l  A)-BR- ]T[I + R cKc(jwl - A)-BR ] '"'"

-AB T R- i T A-
= I + R BT(jwI - A 0c (jw - A) BR c (9.39)

This equation is known as the Kalman Equallty. Remembering that at the

T
beginning of this chapter we chose to let Qc = HTH an R = I' we can"

rewrite (9.39) as

[I + K(Jwl- A) B1*fI + K (lw- A) B]
T T--T.-1

= I + ~[T(-jwl -AT)-HTH(jwl -A)-IB]

=.I + ![H(lw- A)-IB]*[H(Jwl- A)- 1B1 (9.40) .

If we now define J - (jwl - A) and

T =V B (. 4])

(9.40) becomes

9-8
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* . - - - 1 *. . - -- '"-

[I + T T + TQ + ptlOB [HdB] (9.42)

For these to be equal, the elgenvalues must also be equal, so that

X{[I + T fl + Tl1} xfl + fH, B *fHOIB..

I + 1X{[HDB1 *HiB]} (9.43)

The last step in (9.43) is a result of the properties given in (2.19)

arid (2.70). Remembering that singular values are defined by (see

G 2[AI = xifAla (9.44)

we can rewrite (9.43) zs

of2[I + T , I + 1 2 [HIBI (9.45)

or

17= T+ 2 [HIB1 (9.46)

which is valid for all a1 , and in particular o and G.

9.2.1.1 Performance Properties

C.ncd performance, as we have seen, requires high loop gains at low

frenuencies. Notice that whenever G[TLol >51, (9.46) becomes

0 rT 1 [HiBl (9.47)

This equation holds for all a1 since all singular values are greater

than or equal to a by definition. Remember that 11 and p are the ."

tunable parameters in the regulator design. Therefore, P and p may be

chosen to meet the low frequency performance requirements we described

in Chapter 4. That is, at low frequency where the loop gains T, are
1.0

high, 0.,47) says thnt the singular values of -1 IB are a good
Cw

approximation to those of T This is extremely convenient because

ca]culotion of T requires solving a Riccati equation, whereas plotting

the siniilar values of1 -- IB does not. Therefore, manv different

cheolce of H and p may be made with a minimum amount of computation.
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H may also be chosen to attempt to bring g fT 1 ard Z [T closer

LQ ~ fLOJ

together (especially at crossover), which typically produces a better

design. We will discuss this further in Chapter 11. Once F and p have , 2

been chosen to produce desirable.- -- i[HBi], the singular values of TTO

can be calculated to verify the approximation (remember that it is good

for low frequency only). As a final note, we add that it may be

necessary to append dynamics (especially integrators) to the plant in

order to meet the performance specs. We will develop this in detail in

the next chapter.

9.2.1.2 Crossover Properties

Looking at (9.46), it is immediately obvious that ."

[I + TLO] > 1 I w (9.48)

,n Ref [9-11, Laub proves that this also implies

"Cl, f I + T > V w (9.49)

Therefore, by using the gain and phase margin formulas in Chapter 3. we

again see that the LO Regulator loop has excellent crossover properties.

9.2.1.3 Robustness Properties

Looking back to equation (4.84), we have

g[T + G(jw)K(iw)_ I > 9 (w) (9.o)
T is our loop transfer function, so this equation has the same form as

LQ

(9.49). Therefore, (9.49) guarantees stability for all unstructure

uncertainties reflected to the input of the plant which satisfy

m(w) < 0.5 . Notice that here Z (w) denotes input multiplicative

* uncertainty. This guarantee will cover our typical low frequency

uncertainties, but we have seen that Z (w) usually grows greater than"
m

unity at high frequencies. Therefore, it is necessary to directly --"'

manipulate the high frequency behavior of T!. Under minimum phase

9-10I-..4-
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assumptiens on H PB, the LQ Regulator gains behave such that

K %TH as p -,."0  (9.51)

where 1W is an orthonormal matrix (Ref f9-21). At high frequencies, we

can represent iw as

s = 1c/A'7 as p 0(9.52)

where c is a constant. Therefore

K (j/c f K(j c/'P')I Al B~

-p'K (jcl -4-pA) -1B
c

WP(jcl) 'B = WHBjc as p-0*( (9.53)

Note that Lrossovers, by definition, occur at a~ rT 1 =1. Also note
ILO

that WL can write c as

jw = jc/-f C =V-* (9.54)

Therefore, c at crossover can be written as w where w denotes

crossover frequency. The maximum crossover frequency corresponds to

[T~j so that (9.53) hecomes

[lTLO]c= WB (9.55)

C, LI
jw~

o~r

w = [HB /,(p- (9.56)
cmax

Note that W vanishes since it Is orthonormal (all a, 1), and the

ranItvec of j Is unity. Fquation (9.56) gives us an expression for the

maximum crossover frequency of T Lo' This frequency cannot be much

beyond the frequency where Z9= 1. Therefore, choices of 1! and p that
m

satisfy our performance requirements must also satisfy

w < W 9.7
cmax 9iwhere w is defined as the frequency where 9.=1, and w Is given

z. m Cmax .%N

by (9r-6).
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Equation (9.53), which says that

WHB
T(LQOw) > - as p -0 (9.58)

LQ~ jwd''

also shows that an attenuation rate of 1/w (-20 dB/decade) Is the price

we pay for the excellent margins near crossover. If M (w) attenuates
m

faster than this, further reduction of w may be required to meet the
cmax

robustness conditions.

9.2.2 Full-State Loop Transfer Recovery Using the Filter

Now that we have designed our full-state regulator loop to have good

performance properties (Section 9.2.1.1), good crossover properties

(Section 9.2.1.2), and good robustness properties (Section 9.2.1.3), we

need to add a Kalman filter into the system using the recovery technique

developed in Chapter 8. In Chapter 8, we said that our system must be

square -- here we will relax this to r >m (equal number or more outputs

than inputs). Also, CDB, the open-loop plant, must be minimum phase.

There are two steps in our filter design/recovery procedure:

1) if necessary, append dummy columns to B and zero rows to K to

make CB and K 4B square (rxr). Note that the dummy columns of B must
c

be chosen so that CMB remains minimum phase.

2) design the Kalman filter with modified ecise intensity matrice.

Qf = T + q2BVBT (9.59) I .

Rf 111 (9.60)

where q is a scalar which takes on a sequence of increasingly larper

values, and V is an arbitrary symmetric positive definite matrix.

Usually, we let V T T. As shown in Chapter 8, (modifying (8.52)-(8.54)

to the LQC notation), the loop transfer function of the ,OC loop behaves

such that _

9-12
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K (S)G.(S) 3- [ K (DB (ODR) 10~B =K I B (9.61)
C c

as q' - in (9.59). Therefore, the LQG loop asymptotically approaches

the desi red TL we have just designed. Notice this recoverv Inverts the

plant from the left and thus dictates our minimum phase requirement on

the plant.

N~ote that this procedure corresponds to breaking the loop at point

(1D (the plant input) in Fig 9.1, and recovering the ioop transfer

function of point (Ct.

9.3 LOG/LTR Design Breaking the Loop at the Plant Output

All of the development In this section is a dual of the development

in Section 9.2. Therefore, we will move much more quickly and leave the

verification to the reader. LI.~

...3.1 Full-State Kalman Filter Design

Pere we will treat r and p as completely tunable parameters rather

that f-,e 1 noise Intensities. The loop transfer function of the filter

Is given by

T =CU (9.62)KF f

Usingp the Kalmani Equality corresponding to the filter, we have the

relation

[I + T [ + T I + -[ric1I(9.63)

Therefore TYlT TF

if T + TKF =i + 1 1
2 c~P 1 (9.64)

I.At low frequency, where a [TI >>I, this can he simplified as -

ifi

Again, rany choices of P and 11 may be made without solving Riccati.

equations In order to ecet the performance specs. Again, it may be

necessa rv to augment dynarics to the plant in order to meet these specs.
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The same guaranteed margins hold for the Kalman filter as for the T..

Regulator, so that crossover properties are very good. Finally, as

,I' Kf wr (n.66)
f

where W is again any orthonormal matrix. This implies

w = 8for]/V (9.67)Cmax , .-

Notice that in this procedure, M(w) is not, in general, the same as in

the previous section. Here it denotes a bound on the uncertainties

entering at the output of the plant, such as sensor dynamics errors.

9.3.2 Full-State Loop Transfer Recovery Using the Regulator

Again, this is a two step procedure:

1) assume m >r (equal number or more inputs than outputs). Append

dummy rows to C and zero columns to K so that CK and COB are square
f f

(mxm). The dummy rows of C must be chosen so that CB remains

minimum phase.

2) design the LQ Regulator with weighting matrices

THH + qcT VC (9.68)

R = pI (9.69)

where q is a scalar taking on increasingly larger values and V is an

arbitrary, symmetric positive definite matrix. Then as q -- oo

c WC (0.70)

and .

C(s)K(s) C B[(CMB)-cKf] = CIKf (9.71)

which is the Kalman filter loop TKF we just designed. Notice this

recovery inverts the plant from the right and thus dictates our minimum

phase plant requirement.

9-14
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This procedure corresponds to breaking the loop at point GA, (plant

output) in Fig 9.1, and recovering the loop transfer function of pointL

(R.t

91.4 Good News for the Lost .'

By now, the mass of equations in the preceding chapters probably

has you wanting to ignore this method completely. Therefore, the next ~*.

chapter starts out with a "cookbook" approach to appending dynamics to

the plant, then summarizes evervthing thus far by giving a step-by-step ~ ~

outline of the method, whether breaking at the input or at the output of

the plant.
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10. AUGMENTING DYNAMICS AND A STEP-BY-STEP OUTLINE OF LQG/LTR .. ,.-.
.%......

Tn this chapter, we give a summary of what we have developed so

far. Also, since it is usually necessary in the application of the

method, we include the development of how to augment dynamics (typically .4 *.-,tt

integrators) to the open-loop plant. To give equal treatment, we will

begin with the procedure for breaking the loop at the output to the

plant, since we started with the input last chapter.

10.1 Loop Broken at the Output

Pere, we assume that all uncertainties in our system are modelled

such that they enter at the output to the plant. Therefore, we wish to

break the LOG loop at the plant output and examine the loop transfer

matrix C (s)K(s) to ensure that it will yield
p

a) good command following

V) good output disturbance rejection

c) good robustness to modelling errors reflected to the plant

output

,,ig 10.1 shows a block diagram of the LOG system.

K(s) G (S)
P

Fig 10.1 MIMO Block Diagram

Note that we have denoted the plant as G (s), with the input and output
p

labelled as u and y, respectively. Fig 10.2 shows a block diagram of

"" our uncertainty representation.

10-1
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Gp(S) Lp(S) %, =v.

Fig 10.2 Output Multiplicative Uncertainty

Keep in mind that the only places it makes sense to insert uncertainties

is where nature does, i.e., at the input u or output v to the plant.
p p

LQG is limited in how it can affect the loop shapes of the svstem.

Since we desire high loop gains at low frequency, and usually want zero

steady-state tracking error, we need integral action In the loop. If MIL.

pure integrators are not in the plant to begin with (for aircraft they

usually are not), we need to augment them to our plant. Actually, we

can augment any dynamics we wish to, but integrators are the most common

choice. Let G (s) denote the square augmented transfer matrix. For

integrators, this is obviously given by

G (s) =11 (10.1)
a

Technically, this is part of the compensator since the designer chooses C

it. Now we must decide where to put this transfer function. Let's try

at the input to the plant and see if it makes sense, rig 10.3 shows the

new block diagram. ..

K(s) I- - - - ____ ___,____- -.--

R El U P p
SKLQG(S) A P (S)

. -I I- .-.-

9.7

Fig 10.3 Block Diagram of the Input-Augmented LOG System

1 -2
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"4 Note in Fig 10.3 that we have defined our overall compensator K(s) as

K(s) = G (s)Lc(s) (10.2)

where X],. (s) Is the LOG compensator we discussed in several previous

chapters and will design using LOG/TR. Therefore, we can define the

open-loop augmented plant as

G(S) G (S)C(S) (10.3) --

fo ic

Note that the input to G(s) is not the physical input u (s), but rather

the control signal u(s); the output from G(s) is the physical output -:'"

yp(s), however. Therefore, it does make sense to break the loop at the

output from C(s) in this system. Had we augmented dynamics at the plant

output, it would not make sense to break the loop at the output of C(s).

Therefore, Fig 10.3 shows the correct choice of augmentation. -

In state space form, G(s) becomes

(t) = Ax(t) * Bu(t) + rF(t) (10.4) .

y (t) = Cx(t) + n(t) (10.5)
-p

If the original C (s) was defined by the triple (Ap, B C) and G (s)
p p a

was defined by (Aa B C ) the new triple for G(s) is given by
a a a

A B
A p a (10.6)

0 Aa

B= (10.7)
Ba

C= IC O] (10.8)
P

This is shown in detail in Appendix 10A. Note that this may not yield a

minimal realization, and minimization should be done before proceeding.

Appendi: IOB provides a brief discussion of realizations. Also note

that we do not give r a specified form here since we will consider it to

be corpletely tunable. Tf ( (s) is given by (10.1), then A = 0 (the- a

10-3
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zero matrix) and B = C =1.
a a

With the problem set up in this form, we first must design a Kalman

filter, and then design an LQ Regulator to recover the filter's loop,

shape. The Kalman Equality gives (see last chapter)
(I+ )( TF* 1 *

(I + TKF)(I + T KF I + i(TFOL )O(TFoL) (10.9)

where o

T =(D (10.10)
KF C Kf

and

T -FOL =c (10.11)

r and p. are the tunable design parameters. As 1--v0, the filter gains Kf

become large, and therefore so does 2 [TKF] at low frequency. For

g[TKF > > 1,

o[TKFl - -iTFoL (10.12)

Again, this was shown explicitly in Chapter 9. Using this

approximation, we may now begin our step-by-step procedure.

STEP 1:

a) Select r and i such that the command following, disturbance

rejection, and crossover frequency specs are met by - YT FoL. That

is, we would like the plots of --ai[T to meet the low frequency

requirements of Fig 10.4. These requirements were derived in detail in

Chapter 4. Note that this requires construction of an t (w) and a p(w)

profile. There Is no automatic procedure to construct these, and we

will discuss them further when we do some examples.

10-4
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PERFORMANCE INinn~.

REQUIREMENTS LO Ii SABLT

p WO ROBUSTNESS
2[T) >

RcauiREM NT

Fig 10.4 Desired Loop Shapes

The approximation between T and T is really only good at low
KF FOL

frequencv, so that r and 'p should be chosen to meet the low frequency

performance bound. We would also like the a and 6 plots to be close

* togetber, especially near crossover, which can also be affected by

changing r . A more formal procedure for bringing the plots together Is

discussed in Chapter 11. Our requirement for good crossover properties

L Is satisfied automatically by the full-state filter. Finally, we must

*have w BfCrJ/,vP less than the frequency where k. crosses the 0 dB
Cmax:m

line.

b) After the necessary iterations, plot -ocjt T ]O that meets the

specs. "

0 Save r and pifroir the step above.

k STEP 2

a) Ursing the values of rPand )j in 1c), solve

10-5



o = AZ + EAT + rrT - (10.13)

for E.

b) Calculate the filter gain matrix K using

Kf =1ECT (I0.14)Kf = 6 %

c) Calculate and plot ai[TKF1, where TKF K These should

match those found in Step lb) at frequencies below crossover.

d) Calculate and plot

a[I + TKFJ > 1 (10.15)

a t[I + TKF - ] _ (10.16)

These are actually not tests -- they are facts. That is, inequalities

(10.15) and (10.16) must hold for any full-state Kalman filter. If

violated, you have made a serious error somewhere.

e) Double check for guaranteed robustness by verifying that

< _[I + TK (10.17)

or

119m > j'TKF[I + TKF] 1 (10.18)

holds for all frequency. In practice, (10.18) is better conditioned

numerically than (10.17). If this fails, go back to step la) and start

again, unless the violation is at very high frequency. Remember that

when we build this up into an LQG compensator, it will have an

additional 20 dB/decade roll-off, so that we may eliminate the

violation.

STEP 3:

a) Calculate the transmission zeros of CB, the open-loop plant.

-If all of them are in the left-half s-plane, we will be able to

asymptotically recover the loop shape TKF we just designed. If some are

in the right-half s-plane, full recovery is not possible. We will

10-6
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discuss this further later. For now, we assume we do have a minimum

phase plant. *-

4. b) Design a sequence of LOG compensators by designing an LO

Regulator which recovers the properties of the full-state filter.

First, solve

0=PA+A P+Q -PBR B P (10.19)
c c.

where

and

c =pT (10.21)

and let q H, V, and p are free to be chosen by the designer,

with Vusal se eqa toteiettmarx

Secndcacultethe LQ control gain matrix K by
TC

V B P (10. 22)

c) CluaeteLOG compensator transfer function

K (sT l- A +RK + KC0 K(1.3LGc c f f(12)

boe attepatoutputc fo th (1.0

G s WG(s)KLQG(s) --

G(s)K(s) (10.24)

P) Compare a ll 1 from the previous step with a [TXF from step

2b).If heyaresufficiently different (remember that T will always
0

be dffeentat ighfrequency due to an additional 1-pole roll-off),
1ncear a n sep3b) and repeat 3b)-30'. Continue this until
resoaleapemetbetween a([TI and o[ Isobtained.
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f) Calculate arnd plot CYfl + T 1.Double-check for guaranteed

robustness by verifying that

1/tm >{ T [I + T W.7) "
m 0 o

and that the boundaries on Fig 10.4 are not violated by To.

g) If all these tests are passed, then

K(s) = Ca(S)KLOC(S) (]0.26)

This ends the procedure for breaking the loop at the output.

10.2 Loop Broken at the Input

This is the mathematical dual of the previous procedure. Here, we

reflect our errors to the input of the plant, and must therefore augment

our dynamics at the output. However, since the output y is what we.

measure through our sensors, we cannot augment until after we feed back

the unaugmented output. Therefore, we move the augmentation to the

front of our controller, as shown in Fig 10.5.

K(s)

R" E I y Cs).-L GA(S) -KLQ (S)_I G G(S) "'"

- A LQG Ges

Fig 10.5 Block Diagram of the Output-Augmented LOG System

Looking at Fig 10.5, we can see that

K(s) = K1  (S)G (s) (10.27)

where G (s) represents our augmented dynamics and KLOC(s) is our LOG
a

compensator. We will now let

G(s) A C (s)G (s) (10.28)
a p

and design a compensator for this augmented plant. In state space form,

(;(s) is given by

10-8
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x~)=Ax(t) + Bu (t) + rv()(1.9

y(t) C x(t) + n(t)(1.0___

where ::::

A jaB~~ (10.31)

FnF

= (10.32)

C=[C 0](10.33)

Again note that this realization may not be minimal, and should be

minimized before continuing. Appendix IQA shows the derivation of this

realizption, and discusses the reworking of the noises.

With the problem set up in this form, first design the LO

K:Regulator, then design a Kalman filter so that the LQG loop recovers the
rep.gulator loop. The Kalman Equality for this case Is

+T 1:0) (1 + T) = I R+ ~(~ (ROL) (10.34)

where

Tq K 4B (10.35)

and

TO =H(B 
(10.30)

11 and p are the tunable design parameters. As p-0O, the regulator gains

K cbecome large, and at low frequency a[T 1 I> 1. Therefore,

fTLQ Cf [T 1 (10.37)

We now begin our step-by--step procedure.

STEP 1;

a) Select 11 and P such that the stated command-following,

disturbance rejection, and crossover frequency specs are met by

--a. [T1 1 That is, we want a1 high at low frequency to clear our

10-9



performance barrier, a and c close together if possible, and ¢*...

w = - [HB to be less than the frequency where k crosses 0 d.

b) After the necessary iterations, plot --I [TRoTL that meets the

-4 specs.

r
c) Save F and p used in the above step.

STEP 2:

a) Using the values of H and p from step 1c), solve

PA + A P + H H - -PBBp (lO.3P)
P

b) Calculate the regulator gain matrix K using

K = -BTP (10.39)
c p

c) Calculate and plot Gf[TL ] using (10.35). These plots ,,:ould

match those found in step 1b) at frequencies below crossover.

d) Calculate and plot

.- + T1 Q] 1 (1W.40)

oil +TLQ . (10.41)

as a double-check on your results. These tests are guaranteed to pass.

e) Double-check for guaranteed robustness by verifying that

1/9,m > { T 10 I + TJ 0
- ) (10.4?)

If not, go back to step la) and start over, unless the violation i at.

very high frequency.

STEP 3:

a) Calculate the transmission zeros of the open-loop plant, (B.

If they are all in the left-half plane, we will be able to recover T

when we add our filter.

b) Design a sequence of LOG compensators. First, solve

0 = A), + 3AT + Qf - FCTRf-C Z  (1e. 3)"

where

10-10
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T T %
Of=rr + qBVIYB (10.44~)

ind

Pf = PT (10.45)

and let q--+w . r and p are the nominal Intensities of the process and

measure~nent noises, respectively (often, we allow them to be tunable).

V is frce to be chosen, and usually taken as the identity matrix.

qccond, calculate the Yalman filter gain matrix Kf by

Kf TC -l (10.46)

r) Calculate the LOG compensator transfer function

(s) K(sT-A +BK + KC) K(1.7

0) Calculate the resulting loop transfer matrix for the loop

broken at the plant input

T (S) V WsC.(s)

=V(S)G (S) (10.48)

Calctii;i:'~ and plot a [T 1.

e)Compare af. [T.1 from the previous step with a rTL from step
~I LQ

1). If they are sufficiently different (except at high frequency,

where they must be different), increase q in step 3b) and repeat

3b)-3e). Continue this until reasonable agreement between ic TIand

Ga1 I is obtained.

f) Double-check for guaranteed robustness by verifying that

1/k > jy{T fT + T1  (10.49)

and that. the boundaries of Fig 10.4 (using the appropriate Z, and p) are

not vP-lated by T1

W< Tf all these tests are passed, then

MO ~ ) (s) (10.50)
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This ends the procedure for breaking the loop at the input.

Technically, this Is all we need to do an LQC/I.TR design. P7owever,

some of the steps outlined above are mare difficult in practice then
.4%. -,.1

they appear. Specifically, choosing either r and 11 or 11 and P to

produce a desired loop shape and to have a and 5 close together can be-x

quite difficult and time-consuming. In the next chapter, we will

discuss techniques to draw Q and atogether at certniin frequencies, as

well as a technique to do "formal loop shaping".

10-1
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.

State Space Representations for Cascaded Systems

First, we will give a general derivation for obtaining a state

space representation for two systems cascaded together. Suppose that we

%i%

have tIc following block diagram

Fig IfA. I Cascaded Blocks

and we wish to obtain the transfer function

C(s) = C (s)G 2(s) (10A. 1)

in state space form, given the state space forms of C (s) and G 2 (s).

Specificallv, let C (s) be defined by

A X Blz (1OA.?)

y =Clx + Dl7 (1OA.3)

and C , () be defined by

2=A,x 2 +B u (I OA.4)

C ?x? + D 2 ( OA.5)

The inp,t to G(F') as dofined by (1OA.1) would be u, and the output would

by. Therefore, we need to eliminate z. We can do this by

substiciting (1OA.5) into (1OA.2) and (10A.3) to obtain

= A x] + B C x + TI 1 )2u (1OA.6)

. X + DlC2X ?  + D 2U (IOA.7)
- 1 12? 12

Now e. '-ar; definE, a ncw augmented state vector x, given by

1 (10A.8)

x2j
so that

10-13 -
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1 2]
[ 0 ALC [Bi uA1 A

Y = [C I D ICl j + [DlD 2 1 u (1(0A. 10)

Therefore, our new state space matrices would be given by

B, j
C= c1  D1C21 llA

a A

2x

D [ D ~ l (I 0A. 16)
1 2~

Theslet'obviosl prouc theAs and Co murarice dyvnaics and.)-what

sapn we cosr nite itoseatnbepaaeew.il o moeti

Loop Broken at the Output HerThi (s) biterckmer ths)and th ruFp

cs.eGs)becomes C (s). Hoeew andie a2 ssobciated wit Gs) (s). w
a p

hereoeu nois asso ented t s)at dntes hoer tatun D tD0)

p p
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.4 fror the augmented system has no measurement noise directly associated

with it - the output y (which we wish to eliminate) does. This noise
'P

propapates to y through the x a states. Therefore, we will assume that

we cana o-efine a new nouise, again represented by n, which enters the

outputs V instead of v T. Our new state space then becomes (again

*assumiugP D =p0)

7 [o
. FL

V = (10lA. 18) .

xa

Teclinlcallv, the r' matrixr given In (10A.17) should be used in (10.44).

IUsuallv, we let P= 0 Ir this equation, however, since th~e qterm

overwhelms It. Vhen we simulate the system, we will "ov the noise

back tc v where it helongs. The value of px we use in (10.45) is not W
p 2 2

that critical, since It can be compensated for by adjusting q (q will

doMinate, anyway).



APPENDIX LOB

State Space Realizations

The state space realizations for the cascaded systems described by

(10.4)-(10.8), (I0.29)-(10.33), and in Appendix 10A may not be minimal.

First, let's define a realization. A state space realization of the

transfer function G(s) is any quadruple (A, B, C, D) which satisfies

G(s)= C(sI - A) B + D (1)B.I)

We say any quadruple as there are an infinite number of them. There are

a variety of methods (which may be found in several texts on linear

systems) to find such a set of matrices. A minimal realization of C(s)

" is one such that the A matrix has the smallest possible dimension. It"

is easy to prove that a minimal realization (again not unique) must be

controllable and observable. If not, there would be pole-zero

cancellations, which would account for the additional unnecessary

* states. Reversing this argument, if we augment our system with dynamics

which cause a pole-(transmlssion)zero cancellation, the realization will
,. .'

be nonminimal and the resulting system will be either uncontrollable,

unobservable, or both. This will especially cause problems if

integrators are augmented to a system with a zero at the origin.

Therefore, a minimal realization of the system should be used in the

design. r

Computer packages such as MATRIX and CONTROL-C will easily findx

the realization of a transfer function, as well as find a corresponding W .

minimal realization.

10-16

. * * . . . .

.- ~~ ~ ~ ~ ** . ........ ...... ..: --



Chapter 10 References

* rHO-11 11. Athans, "Lecture Notes on Multivariable Control Systems",

* LIDS Peport, Mass. Inst. of Tech., Cambridge, MA, June 1984.

* 110-21 J. C. Dovle, "Matrix Interpolation Theory and Optimal Control.",
Ph.D. Dissertation, University of California, Berkeley, Dec 1984.

Ow

10-17



-U.

%'. ....

11. LOOP SHAPING TECHNIOUES %

In this chapter, we will briefly present two techniques to aid the

desi!gner in choosing the required parameters to shape the filter or

regulator loop. Each technique has advantages and disadvantages,

which will be pointed out. In general, the designer must choose either r

and V to shape the filter loop or H and p to shape the regulator loop.

The scalars pj and p tend to act as "gains" which basically raise or

lower the singular value plots without affecting their basic shape.

Therefore, the difficult part of the design involves choosing either r or

H. One method is simply trial and error. This chapter provides two

others which the designer can use.

11.1 A Technique for Bringing 9 and Together

This technique can be used in order to draw the maximum and minimum

singular values of the loop transfer matrix close together. However,

the technique only brings them together over limited frequency ranges,

rot at all frequencies. Depending on the system, this may or may not be

helpful in the design of the system. As usual, dual procedures exist

when br(akIng the loop at the input or output of the plant. Again, we

will start with the output.

11.1.1 Loop Broken at the Output

The first assumption we will make is that a bank of integrators is

to be aupmented to the plant. From Chapter 10, we saw that we must

append these to the input of the plant. The two sets of state equations

are (ignoring the noises In the plant for brevity)

X =A x +By (1.1)
p p p pa

y Cx (11.2)
p p

x A x + B u (11.3)a a a a

11.-.--



C X

Since we have assumed that we augmented integrators, we know that A =0
I'a

and B -C =1, so that the augmented state equations become
a a

0 0 C(1.6

-pp

Defining new A, B, and C matrices from the matrices in (11.5) and

(11.6), we can derive the exrsinfor -s A) as(16)i

Bs~A1 (s1-A

T CFC(sI-A) B1' l

FOL4

prtitimed fortoc the diesin.oeeme we assum thyit to shpei

mutplctini (slP) we getA

P11-2
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T C(s-A~ RBr + C(sI-A r
TO -F (11.9)

Should we desire to tighten the spread of singular values of TFO at low
* O. .

frequency, we can examine (11.9) at small w (replace s with iv).

Obviously, for small w,

Ojwl -A) -A -1.0

so that (11.9) becomes

T u-CA B r-CA r
FOL p Pp I p p 2(1.)

Since w Is small, the first term dominates. Let's choose

r -(C A B)(1.2
1 p p

Then (11.11) becomes

FOL jw pp 2

Now, for arbitrary r ,T will look like a bank of pure integrators at
2? FO!,

low frequency, and the singular values will all be nearly Identical.I ~ ~~Note that (11.12) actually says * . ~

that is, the Inverse of the plant at w =0. Also note that we could let

r2= 0 In (11.13), which may produce a matching of singular values over

a larger frequency range. To get an approximate match at low frequency,

however, we only need to choose

where F. is arbitrary.

Now let's look back to (11.9). If we let w he large.

(iwT -A ) -- (1.6

11-3



so that (11.9) becomes %

r%
T C B + C (11.17)
FOL pJ) 2 Pw 

At high frequency, the second term dominates. Therefore, let

T T-1P = C (CC ) (11.18)
2 p p p

We makethis strange choice since C is rarely square and we don't

want to use pseudoinverses. Using (11.18) in (11.17), we get

T CB +- (1.19) -
FOL P P (jw) 2 jw 4A 4

At high frequency, the first term is small compared to the second, so

that the singular values at high frequency will be nearly identical for

arbitrary F1. Here, we cannot let r = 0, as doing so would remove our

low frequency integral action. This is easy to see by looking at

(11.9), where the integral action is clearly contained in the first .2

term. In general, therefore, we need to let

r r
r =i(11.20)pT(Cp p -.- "-'- "C. ..-T

with arbitrary (but nonzero) r1 to get high frequency matching.

We could also try a union of the two choices, that Is, let

S TC CT)-1(11.21)

This should produce singular value matching at both low and high

frequency. However, at frequencies inbetween, the match may be very

poor due to the additional "nonmatched" term in (11.13) and (11.19).

Remember that our real goal was to match the singular values nep r

crossover. Realize that neither low nor high frequency matching, nor a

union of the two, may produce this. Whether it does or not depends upon

11-4. ..
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the structure of the particular example. Also note that the high

frequency matching alone may not work at all, in the long run. By high

frequency matching, we mean matching the singular values of T at high

frequency. What we really need to be matched are the singular values of

TKF In the previous two chapters we showed that the singular values of

T Fol and TKF are guaranteed to be approximately equal, but only at low .

frequencv. Therefore, matching 0i[TFoLl at high frequency alone

guarantees nothing as far as CyiTKFI is concerned.

11.1.2 Loop Broken at the Input

Again we assume that we have augmented a bank of integrators, but

this time at the output to the plant. Therefore, our state equations

are

-A x + B u (11.22)
p p p p p

yV C x (11.23)
"p p p

A x + Bay (11.24)
a a a p

y C x (11.25)

Since we are augmenting Integrators, we know that A 0 and B C I,a a a

so that the augmented state equations become

F: = + u (11.26)
1X-- Ps-00 I -1 P,-'-

y = 1o1 ( 1 1 .2 7 ) .: ..

Defintre new A, B, and C matrices from (11.26) and (11.27), we can

derive tie expression for (sT A) a1
SI( (sTA )_ nI--

(s =K2A)

- A 2 (11.28)
-Cp 51|i (s.I A ,-_

__ s p s "- '

[ II -5 p'-"
11-5
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The loop we are trying to shape is

TR =HFB =H(s- A)- B
ROL

(si-A 0 Bp

1 [H H2i P (11.29)
) 0T

where we have written H in partitioned form. Carrying out the

multiplication in (11.29) we get
Tp)-1B -1"--

TROL Hl(SI A + H2C (sI-A)- p B (11.30) 4.

IS

Without going through the details, for low frequency matching we need to

choose

F= fH1  G(O) ~~1(11.31)
with H arbitrary and G(O) the Inverse of the plant at w = 0. For

high frequency matching, we must choose

-1 T
H= [(B Bp) B H (1.32)

p p p2
* where H is arbitrary, but must be nonzero to retain the low frequeicv

2

integral action. Again, the union of the two, that is

H =[(B TB -1 B T G(O)- 1 (11.33)

may be chosen to match singular values at low and high frequency.

Again, we caution that none of the above procedures guarantee desirable

results around crossover.

11.2 Formal Loop Shaping

The above technique for matching the singular values at low or high

frequency is obviously limited. We cannot specify the entire loop vhqpe

using that technique; we can only dictate the behavior over limited

frequency ranges. The technique we will now present, called formal loop

shaping, gives us a way to specify all of the loop shapes over the

11-6
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critical frequency range. There is possibly a severe penalty we pay to

do this, however -- it requires the augmentation of additional states.

We will start with the plant broken at the output.

11.2.1 Formal Loop Shaping at the Output

Looking back to Chapter 9, we saw that for low frequency, where the .

loop gains are high,

Tl [TKFI = -CTC Kf1 ] oCpr] (11.34)

As we bave seen before, the "shape" of T under this approximation is
KF

dictated by C r , and p becomes a "gain" parameter which raises or Olt

lowers the singular value plots. For convenience, let's represent C"_r

by W(s). If W(s) is simply some shape we have in the back of our mind,

then r may be found by trial and error or by the previous procedure in

this chapter. If, however, we can represent it as a transfer function

ratrir-, which we will call Wd(s), we can avoid using trial and error.

Let's assume that we know exactly what our loop shapes should look

like -- better than that, let's assume that we can represent them with a

state space realization

W (S -1s A P (11.35)
d s) = Cd(s I - Ad)-Id

There should never be a Dd matrix here, as the loop shapes must be

strictly proper (more poles than zeros). Also, remember that the Wd(S)

we choose must be realizable using a Kalman filter (should have integral

action if you have augmented integrators and have a 1-pole excess).

Obviously, to do a realization we must first have a transfer

function Wd(s). If we know what we want Ci[Wd(s)l to look like, there

are two "missing" pieces of information needed to construct a unique

transfer function. They are:

11-7
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1) phase information '"-,,,"".

2) cross-coupling information

The first is not a major problem. It makes sense to assume a transfer

function that is minimum phase. The Kalman filter design procedure will

not place a zero in the right-half plane anyway. Therefore, the phase

information is not really needed.
.. ::,.......

The second missing piece is a bigger problem. There is no way to

determine unique individual multiloop transfer functions from singular

value plots -- that is, there are many transfer functions which produce

the same singular value plots. One easy way around this is to assume

that Wd(s) is diagonal. Then, each oi(Wd(s)] plot is nothing but a SISO

Bode magnitude plot for each diagonal function. This is the approach we

will take. Constructing transfer functions from Bode magnitude plots of .:

minimum phase systems is relatively simple, and documented in most '

classical control texts.

What we will do is augment the desired dynamics W (s) to the output

of the plant. Since these dynamics enter the system via the process

noise (obvious since r is involved), we will drive these dynamics by

-. Fig 11.1 shows the block diagram.

n

- W d (S) :2 ':

Fig 11.1 Augmenting Desired Dynamics to the Plant Output

Note that we are showing the process noise entering at the output ot the

il7-B.-. . . . . . . . . . . . . . . . .



plant. Also, we show the noise n as being unit intensity, but being -

multiplled by JIT, which is equivalent to our old representation. From

Fig 11.1,

y= G(s)u + Wd(s)E + PIn (11.36)Yd

From our original development

Ax + Bu + r (11.37)

y = Cx + 1In (11.38)

so that

y CDBu 4 cPE+ 111n (11.39)

Comparing (11.36) and (11.39), and remembering that G(s) = COB, we can

see that

W (s) = Car (11.40)

which is exactly what we want when we take the singular values of each

side of (11.40). Now let's look further at the state space block

diagram for this system, as seen in Fig 11.2.

x~ Ax+n

d Xd.... .. . . ..

,- d

+' .-.+ X y:'

Fig 11.2 State Space Block Dlagram of the Output Augmented System ......

The resuilting equations are

,... , Ax + Bu (11.41)

~~~11-9 """
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Xd Axd + Bd (11.42)

y - Cx + C x + pn(11.43)
d d+jn

z = Hx (11.44) ..

which may be written In augmented form as

1 d [A +~ (11.45)
L*= 1 A d j ~ d U

[x-
y = C CdL + pIn (11.46)

Z H 011 (11.47)

Therefore, we define a new system given by .

x x+'U+(11.48) :

y = + pijn (11.49)

z =H (11.50)

where 2,' C, r, and F are given by the corresponding matrices in

(11.45)-(11.47).

Notice that (trivially obvious due to block-diagonal form of the

matrix in (11.45))

1) the modes of Adare uncontrollable from u

2) the modes of A are unobservable from z ~.
d

3) the system is completely observable from y

4) the modes of A are uncontrollable from

Conditions 1) and 2) pose no problem to our Kalman filter design, since

the designer chooses A and we choose it to be stable. Therefore, A.
d

will be stabill~able from u and detectable from z. Condition 3) i ,

obviously no problem. However, condition 4) may be a problem. If ntv

11-10



of the mrodes of the plant are unstable, then the system would not be

stabilizable from E. First, we w1ll assume that we have a stable

plant. Then we will return to the unstable plant case.

11.2.1.1 Stable Plant

i _'ww;2",' %

For this case, the r matrix is given by .

0
(11.51)

~d]

so that

0 0

-T =I (11.52)

and

Rf = 111 (11.53)

For the recovery procedure, we must use

. [H 0 1T 11  0 + q2 [C Cd]T[C Cd]

HH+ d'C (11.54) , . ,0 d cc C dTCd

and
R - pI (11.55)

Note that in (11.54) we have let the tunable V matrix be identity --

this is not required, it just makes It easier to show the results.

11.2.1.2 Unstable Plant

In this case, the system is not stabilizable from , which is

"-K, required for the optimal control procedure. Therefore, we rewrite the

:... plant transfer function C(s) as

C (s) = B (s) G (s) (11.56) "
p ms

where C (s) is minimur phase and stable, and B (s) Is an all-pass
mis p'.

" ~~11 -11"'- -"
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• :b

filter, that is

B (jw)B (Jw) I Vw (11.57)

For us, the plant will already be minimum phase, so we simply need to

factor out the unstable poles. This is easy, since all the transfer

functions have a common denominator. Assuming that we have unstable

poles at si  pi (pl positive), the all-pass filter will have the form 777

7(s + pi) . '.
(s)= i

B (S (11.58)

and G (s) will be identical to G(s) except that all (s -p terms will
ms

be replaced by (s + pl) terms.

We can now redraw Fig 11.1 so that our noise enters the system

before B as shown in Fig 11.3.

p

++
B (s)

s P ""s)-p

Fig 11.3 Output-Augmented Dynamics for an Unstable Plant

Note that y' looks much like the y In the stable plant case, if we use

G (s) instead of G(s). We will realize G (s) by
ms ins

(s) C (s -A B (11.59)
ms ms ms "s

so that the augmented state space becomesF: ] IA Fe]
= ms + + (1

• " L d 0 Ad~X \jjud! BO -:"."
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lii

'= [ CMS C d d (11.61)

Adding the equation

y B y' + In (11.62)
p

and the fact that

Y' C u + W (11.63)
ms d

we get

y B -] G u + B W + pIn (11.64)
p ms p d

Remember that we defined C(s) - B -1 , so that comparing (11.64) with
p m

(11.39) we see that CIF = B 1W Taking singular values of both sides
p Wd'
-1

i[Ccr] = GirB p  Wdl = al(Wd (11.65)"

since B (s) is all-pass, which by definition (see (11.57)) has all
p

singular values equal to unity. Therefore, this augmentation gives us

what we want.

We are not quite done. The augmentation in (11.60)-(11.61) is not

what we want, since the output is y'. We need y as the output so we

must extend the augmentation to include B (s). B (s) may be
p p

realized by
-P ) -l1 a '-."

B (s) C (s - A B + D (11.66)
p ap ap ap ap

We will always have a D term since an all-pass always has equal order

numerator and denominator. Fig 11.4 shows a block diagram of B (s),
p

in the position it appears in our system.

1 --.1
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n ~ y

app

x =A 4 +B y
ap ap ap

apap ap

Now, ~ ~ Fl cmiig(16) 11.67) (11.68) Dig an our re(sposquto

Usn thi figur wed get1,wecnsethtPW

Au x (11.69)
[B :ms a ds Aap d~ d~

Cy +D C+ D C x + pin1 (11.70)ap ms a m p

0~ A1 0 0 x 1 + B (11.71)d d d

La

This syste i s bizabl fro u ad ~addtcal rmyad

Therfore we hoos

'.4p

i .p



F 1%

0 fO Bdj 0 0 0 (11.72)
fO 'dd 01 = o d

00 0 Os

14'
4.Jand T6

0 =f 0 0111 0 0]

.. + q C D C D C C ITVfD C D) C c (11.73)

ap ms ap d ap ap ms ap d ap

with PRf and R cas before ((11.53) and (11.55)).

11.2.2 Formal Loop Shaping at the Input

For breaking the ]oop at the Input to the plant, we wish to shape

the sirgular value plots of TLO given by

[. TL [iK~R 4 .LGI =B (11.74)

where the approximation is good at low frequency. Again, p is a scaling

or gain parameter as far as the singular value plots are concerned, so

we will represent HOB by Wid(s),. where Wd(s) is a minimum phase diagonal

transfer function reali1zed by

W ()= C -s B (11.75)
dd~ Ad) d

We will augment these dynamics with those of the plant through our

desired responses z, as seen in Fig 11.5.

A+ Bu (1176

11-1
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% r

z = fx (11.77) '

so that

x = cBu (11.78)

and therefore

z H HOu(1.)

* From Fig 11.5,

Z W Wsu(1.)
d

so that, equating (11.79) and (11.80), we see that

Wd (s) =(D (11.81)

By taking singular values of both sides of (11.81) we see that the

singular values of W d(s) will be the same as those of HHB, which is what

we want. Now, using the realization in (11.75), we can write

Ad = x + Bu (11.82) .'-d dd d

z C Cx (11.83)d d

so that by augmenting this with our original Pystem (and replacing the

noises we omitted)

Vxdi= JF:] + FB] u + F>[1184
Y =c [C + plin (1]1.85)

jxdJ

Z [0 C(11.86)

Assuming that we have a stable plant, this system is stabilizable from u

and and detectable from y and z. Therefore, we can do our LQC/1,TR

design using

[[0 0]I.7

[0 CdCdTI
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R =Pl1.8

FB

Rf VI (11.90)

If we have an unstable plant, A will not be detectable from z.

Therefore, we must again break our plant into an all-pass factor and a

minimum phase stable plant, given by

G(S) = C (S)B 1(S) (11.91)
ms p

This is shown in Fig 11.6.

Ifte eliaio fB () isgvnb
p

B (s) =C (sl A )B + D(1.2
p ap ap ap ap(1.2

then

x A x + B u (11.93)
ap ap ap ap

u =C X + D u (11.94).ap ap ap

Changing u to u' in (11.84), then substituting (11.94) into the

resulting equations yields the new augmented state space ~I

A,, C ms apt X a~ r
BC x. Bd 0,* (11.95) .

d ~d apjdj a
0A x B 0o

a.aP ai ap L

y CrW 0 0 f Xd + pjIn (11 .96)

Ixap]
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2; P F W -- VF-

z = [ 0 c 0 ] ( ! , 1 .9 7 ) : .-F

L apJ ..-..:.

d,.,
x

The system is now fully stabilizable and detectable. Equations

(11.87)-(I1.90) may be used to do the LQG/LTR designs after substituting

the corresponding matrices from (11.95)-(11.97).

After doing a minimal realization of the desired loop transfer

matrix Wd (and B ), the matrices r and H are completely known. This
P 

.

avoids having to select them by trial and error methods, which is the

main advantage of this method. We caution that the major penalty

associated with this technique is the amount of dynamics which must be

augmented to the system. This could be considered excessive, depending

upon the example. Also, formal loop shaping tends to Invert the stable

dynamics of the plant, and Indiscriminant use of the technique could be

dangerous. It is a good Idea to try to Include as much of the oripinal

dynamics of the plant in the desired loop shapes as possible, in order

to reduce the inversion.

1
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12. SOLVING TPF L /H OPTIMTZATION POLMUSING G/T

Th-is chapter does not contain env additions or extensions to what

we have covered thus far. rather, It poses the LOG/LTR methodology In a NP

more mathematical framework, by showing that It is one way to solve a

formal 1 2/H 2 optimization problem.

12.1 The L /F2 Optlm:.!atlon Problem

First, let's redraw the generic MIMO control system block diagram, --

as shown in Fig 12.1. 
'

W.7

Fig 12.1 Generic MTMO Control System

Looking back to equation (4.32), the expression for the output is given

by

v = ((s)K(s)TT + C(s)K(s)l 1 {r - n} + fT + G,(s)K(s)1- d (12.1)

Now we define the output sensitivity function, S Cs), as

s Cs) = rT + G(s)K(s)V-1  (12.2) ___
0

ond the complimentary output sensitivity function, T (s), as
0

T1 (s) = C(s)Y(s)[T + G(s)K(s)V' (12.3)

Note that this Is eifferent from the T 0(s) we defined In Chapter 10.

Using (1?.?) and (12.3) In (12.1), we get

y = T (s.)r - n1 + S (s)d (12.4)
0 0

For goodI command following and disturbance rejection, we miust haveS(s

q ma'1. Remember that our robustness requirement from (4.80) requires

12-1
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[T (s (17.5)

where Im grows large at high frequency. From (12.4) and the above we

can see that T 0(s) must be small for sensor noise rejection and

0

robustness to high frequency errors. Therefore, our two main obiectIves ,,

may be stated as:

1) make S (s) small whenever d(s) or r(s) is large

2) make T (s) small whenever Z (w) or n(s) is large
0 m

Obviously, these objectives require both S (s) and T (s) to be small .

over certain frequency ranges. However, .

S (s) + T (s) = [T + G(s)K(s)] + G(s)K(s)[T + C(s)K(s)]-
0 0

[I + G(s)K(s)][T + G(s)K(s) -  T (12.6)

Therefore, both cannot be small at the same frequency. This was also

* seen explicitly back in Chapters 4 and 5. The final conclusion is that

we must perform some type of trade-off between these two objectives. We

will state this trade-off between S (s) and T (s) as a formal
0 0

optimization problem next.

Back in Chapter 2, equation (2.62), we saw that

U2 [Ml < trrMM*] (J?.7)

where 14 is any matrix and trf-I denotes trace of the matrix. Therefore,

. if we make trfMM 1 small, U2fM] will be small, which says that N is

small. Since we desire a trade between S (s) and T (s), we can use a
0 0

weighting matrix W(s) to dictate their relative importance at any

frequency. The formal L /H2 optimization problem then becomes:2 2

Given C(s), W(s) and the definitions of S (s) and T (s), find a

stabilizing compensator K(s) which minimizes

3 =2~ f0{tr[S° WW S 1 + tr[T To ]}dw (r.P.<)
27r 0Q 0 0 0

If we let
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M(s) =[S (S)W(s) T (s)] (12.9) q

then0 .,.

MM =STjW S + TT 1(1.0
0 0 0 0

Taking the trace of both sides of (12.10), and realizing that V

tr[A + Bi = trfAl + tr[BI (12.11)

we can see that (12.8) may be written as

J =rM d (12.12)2r0

which conforms with the definition of the L 2/H 2norm we gave In Chapter

*2. Now let's see If we can use the LQG/LTR formulation as a means of

solving this optimization problem.

12.2 T. /H1. Optimization Via LOG/LTR

Tr general, the solution K(s) to the L /H2 optimization problem we

just defined need not be finite dimensional or strictly proper (more

poles then zeros). Obviously, we desire K(s) to have these properties.

* Therefore, we will restrict G(s) and W(s) to be finite dimensional and

* strictly proper in order to generate a sequence of finite dimensional,

strictly proper compensators which minimize (12.8) in the limit. For \9

most applications, this poses no restriction on the plant C(s) since it

*has these characteristics anyway. Therefore, we only restrict W(s). We

* will define what we mean by "in the limit" shortly.

Consider our typical system

Ax + Bu + * (12.13)

4.y CX + junr (12.14)

-~ We asstime that and n Pre unit Intensity here, since r and jimay be . *

us e to adiust their effective Intensities. The LOG performance Index

we wisli to minimize Is

12-3



.. .. ,

lim I T 2 T(P6
JO ET-T [z z + puuldt} (1 16)% LOG LTT fo

Notice that we are using p2 here instead of p so that we avoid square

root signs later -- this is simply for convenience. That is, p' is the

same as p used to be. We let r, Vi, H and p be completely tunable

parameters. From (12.13) we have

x(s) = OBu(s) + Or (s) (12.17)

where

= (sI - A) -  (12.18)

1Using (12.17) in the Laplace transformed versions of (12.14) and (12.15)

we get

y(s) = COBu(s) + crv(s) + pin(s) (12.19)

z(s) = HOBu(s) + HITE(s) (.?20)

Writing these in augmented matrix form, we have

(S) COB Ccr p.-.

L;::] 2 oJ[(sJ (12.21)(a~~~~j~ L" * (s) :

Using the fact that we are designing a dynamic output feedback

controller, we can write our feedback law as

u(s) = -K(s)y(s) (12 .22)

Using our typical plant transfer function notation

C(s) = COB (12.23)

we can use (12.22) and (12.23) in (12.19) to obtain

y(s) = -G(s)K(s)y(s) + Cur(s) + pIn(s) (12.24)

.* or
•-i1 -(1

-' y(s) = [I + C(s)K(s)l Cl1' (s) + [T + G(s s)1!l fn (s) (1?.?5)

Now, substituting (12.22) Into (12.20), we can see that

%-.. .

".. ~12-4 '"::
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z(s) =-H$DBK(s)y(s) + Rpru(s) (12.26)

Substituting (12.215) into (12.26), we get

-1
z(s) -- HtBK(s)[I + C(s)K(s)] coru(s) .

-1
- HDB(s)[T + G(s)K(s)1- iPn(s) + P ru(s) (12.27)

Finally, substituting (12.25) into (12.2?), we get

-- 1

-K(s)EI + G(s)K(s)J ii~n(s) (12.28)

V"ow we can write (12.27) and (12.28) in augmented matrix form as

(multiplying both sides of (12.28) by p first)

F z (s)
=P(s) (12.29)

PusLn(sj -/.

where

-~o FoBK( + m -cr -1jH@BK(I + C)
P(s) = 1(12.30)

-pK(Ii + rK)- c ir -1ipK(I + GK)

Mocst (if this probably seers pointless so far. However, notice that

F 71
T T T 2 T

rz Pu 1 =z z + P u U (12.31)

Puj
which Is the integrand in (12.16). Using Parseval's theorem on (12.16)

and tile relation given In (12.29), J becomes
LOG

I -f OtrfPP*ldw (12.32)~LOC 2wT 0

Now we can see that (12.32) looks like (12.12). In other words, if we

*can choose R, r, P, and p in P(s) so that (12.3?) equals (12.12), we

will solve the L /H? optimization problem using LQC/1.TR.

12.2.1 Weighting Choice One >
. %

p ~.t'schoose rPand Pi so that

C =D W (s) (12.33) .

where V(s) Is a weighting function (we will soon see that It Is the same

12-5



one as In (12.8)). Also, let H -C and p -10. Then P(s) becomes

Pcs) r - CoBK(I + GK) -1r 1poKl+G)

W pK( +GKrl -1iCGK( + K) 1

P~) E -pK( 1 + K)- I' -pp(T + GK) 1

I- GJK( + K) 'W -GK(I + GK)-

as p-0O. Notice that

I GK(T + GK) = [I + * [ GKJ' GK[T + GK1 1

= [I + GK - KH[I + OK] 1

= (T + GK)- (12.35)

so that (12.34) becomes

P (s) -*-+OKf (12.36)

*Using the definitions of S 0and T 0in (12.2) and (11.3), we can see that

* ~(12.36) is actually *\.

P~) [So() W(s) 01 (2.37

00

This is almost identical to the definition of M(s) In (12.9). What we

actually need to show Is that, In the limit as p- 0,

tr[NM I tr[S WW S I + trrT T 1 =trfPP I(2.P
0 0 0 0 vx

From (12.37) C.

trtPP I trjj L T](W)j,

S SWW S + TT 
0]l

0r V2 (]?.39a)
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V% W

V 'L

or

trrPP p trfS VWW S I + trrT T ]}(12.39b)
0 0 0 0

The term would come out of the integrand and would not affect the

minimization (i.e., the solution K(s)). Therefore, the given choices of

H. r', Pi, and p do cause (12.32) to have the form of an L /

optimization problem.

No~w lts examine the weightIngs. Remember that (from Chapter 9)

I.j KFl 4  IFOLI 1.0

or

~ CU I o [ur1 (12.41)
i f 0

TLookinp at the choice in (12.33), we can see that the singular values of

W(s) are simply the singular values of the Kalman filter loop transfer ..
function scaled by the constant 1.Also, notice that in the

loop-broken-at-the-outpxit recovery procedure, we normally choose (as

seen In Chapter 9)..

T 2 T0 H H +q CC (12.42)%
c

.9- R

Rc PT (12.43) -

and let q-O Pere, we let

T T0 NH C C (12.44)
c

and choose R as In (12.43), but we let p-*O. These are equivalent in
CLC

the limit since 0 goes to ao proportionallv to C TC in (12.42), and we
c

have already shown that Q-c is equivalent to R -. 0 (see Appendix 8A).
C C

Thie overall conclusion of this section Is that by choosing the

* LQ(/TTP parameters as shown, the resulting compensator will minimize an

L/ optimization problem in the limit as p -*. This Is the "In the

limit" we discussed earlier, and we should note that the resulting

compen~zzotor Is only 1.,/11, optimal In the limit. Also note that this

12-7
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choice of weights Is equivalent to the LQG/LTR procedure with the loop i-

broken at the plant output.

I12.2.2 Weighting Choice Two

Hopefully you can guess that this choice of weights will be

equivalent to LQCJ/LTR breaking the loop at the plant Input. Here weel.'V

choose H and p such that

1- 3 W(s) (12.45)

and let 1r B and p-O Then P(s) becomes

0~ - HRK(I + GK)-1 M~B -1IHBK(I + GK)- I

P~s) -pK(T + GK) COB -ppK(I + GK)1

= W - pWK(I + GK) G -IJPWlC(I +GK

[ -PK(I + GK) G -V.pK(I + CK)-1-] I

[WfI - K(I + OK) 'G1

Gi 01

as 1i-*O. Using the first identities in (2.21), we can write

K(I + GK) G [ T + KG] KG (12.47)

Also notice that

I [I + KG] KGC [I + KG] [l + KG] -[I + KG] KG

=(I + KG] rI + KGC KC] [ I + KG] 1  (12.48)

Therefore, (12.46) may be rewritten as

LW(I +KC)
P(S)) G- (12.49)

Analogous to the definitions of S 0and T09 which are output related. we

can define the Input sensitivity function

S (S) [I1 + KG 1  W1.90)

and the input complimentary sensitivity function

12-8



T (s) = 1 + KG]- KG (12.51)

Using this terminology, we can rewrite (12.49) as

-T1 () o

Now, forming :r[PP ~,we get(1.2

tIP tr(2 L2 ] J[WSi)**1

= r12 [2~i:*W* -WS iT i O

=p'ftrtWS S1 W1 + tr[T T11 (12.53)

The p' term will not affect the minimization, so that the given choices

of H, r, p, and 1' do cause (12.32) to have the form of an L /H 4::
2 2

optimization problem, except that here we are trading off the loop

* properties at the plant input. Using the plant input, the M(s) matrix

in (12.9) would become

111(s) =rW(s)S 1 (S) Ti(s)] (12.54)

so we can see that (12.53) is consistent with this.

Let's examine the weightings we have chosen. From Chapter 9,

(YafT LO= I rK c H I -o 1 fDB1 (12.55)

Looking at the choice of W(s) in (12.45), we can see that singular

values of W(s) are simply the singular values of the regulator loop

transfer function scaled by the constantV7. Also, in the

Input-hreaking LOG/LTR procedure, we usually choose

T 2 T
0 r + B B (12.56)j with q-*oo and

R =R (12.57)f

12-9
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In the procedure discussed in this chapter, we let

0 =BB T (12.58)
f

and

R f PI1 (W .59)

with j-O. Again, the similarity should be obvious. Also, note that

the LOG/LTR solution Is only L 2/h 2 optimal in the limit as v- 0. &'-

This essentially completes all of the theoretical development we

will do towards describing the LOG/LTR method. In the next chapter, we

will present an aircraft example which will hopefully clarify some of

the theory, show how well it does or does not work In practice, and

highlight some interesting points In the application of the method.

12-10
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13. LEONE LATERAL ATTITUDE CONTROL EXAMPLF

To truly understand what LQG/LTR does and how It works we need to__

eo som~e examples. In this example, we will design several controllers

for lateral attitude control of a drone aircraft.

13.1 Example Set-Up

The plant, whicVh Is taken from Ref f13-11, is given by

Ax + Bu + rC (13.1)

y= Cx + n (13.2)

where

-0~.081;27 -0.0001423 -0.9994 0.04142 0 0.1862

-46.86 -2.757 0.3896 0 -124.3 128.6

A = -0.4248 -0.06224 -0.06714 0 -8.792 -20.46

0 i 0.0523 0 C, 0

o0 C0 -20 0

0 0 0 0 0 -20

(13.3)

o 0

B'. 0 (13.4)
"0

20 0

O) 20]

C 0  (13.5)
30 0 0 1 0

13-1
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..

and

TuT (13.7)
ec rc

The states and inputs in (13.6) and (13.7) are, In order: sideslip

angle, roll rate, yaw rate, roll angle, elevon surface deflection,

rudder surface deflection, elevon servo command, and rudder servo

command. The nominal r matrix will not be specified, except its

dimension, which is (6x2). The strengths of and n are assumed to be

unity.

Note that we have assumed that we can measure sideslip and rol

angle. These angles will also be the responses we will try to conticl,

so that our response equation

z = Hx (13. F)

has H - C. The maneuver we will try to design a controller for will be

a step command in roll angle with no change in sideslip.

The open-loop plant, CB, has the eigenvalues shown in Table 13.1,

and one transmission zero at -158.15.

Table 13.1 Eigenvalues of the Plant, X(A)

Spiral Mode -0.0360

Dutch Roll (unstable) 0.1884 * 1.0511i

Roll Convergence -3.2503

Elevon Actuator -20.0

Rudder Actuator -20.0

The singular value plot of CB is shown in Fig 13.1. Notice that the

plant has widely separated singular values at low frequency, does not

exhibit integral action, and has a natural maximum bandwidth cf about 1?

rad/sec.
13-2
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Fig 13.1 Singular Values of the Plant

The last things we need to establish are our performance and

robustness requirements. Mathematically, this translates into defining

the scalar functions p(w) and Z (w). For p(w), we shall assume that we
m

require our loop transfer to have at least 20 dB gain at w<0.1 rad/sec.

We will also require tracking of our commands so that (formally)

integral action is necessary, and will impose a restriction of 10

rad/seL for the maximum crossover frequency of our system. For our

robustness requirements, we assume that our model is reasonably accurate

(to within 10% of the true plant) up to 2 rad/sec, then our uncertainty

grows without bound at a rate of 20 dB/decade. This produces the m(w)

curve shown in Fig 13.2.

13-3
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-20

000' 00, 0' 1 0 '00 '000

Fig 13.2 Uncertainty Profile f

* ~We assume that this 9 (w) represents either Input or output "f~'

multiplicative perturbations. Putting these requirements on perfornitrce

* and stability together, we come up with the loop transfer function

"barriers" shown In Fig 13.3.

to ft

sot

20ft.

Fig 13.3 Performance and Stability Barriers

Recall that the low frequency performance barrier is actually a

performance robustness barrier and Is not p(w). From (4.83), It Is -t..

13-4
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'p%
given by .,

performance barrier (p.b.) - W (13.9)

S 5ince Fig 13.? shows that L (w) is a constant from 0--w,-0.1, the

denominator of (13.9) Is constant. TransformIng (13.9) to decibels we

see thnt

p.b. 20logtp(w)l - 20log[I - L()

=?flogfp(wll + C.91 dB (13. 10)

Thus, tlie barrier shown In Flp 13.3 is shifted upwards by 0.91 dB over

the actual p(w). In the figure, the difference Is hardly noticeable.

13.?' Design With~ Output Uncertainties

le will tiow proceed to design several controllers for our plant,

assuvirf !Irst ttlat we are mvo'elling uncertainties at the output of the

plant. IFealiz,- that' O~trp tile system is square, we can design at the

output or at rhe Inpt. First, even though we cannot possibly meet our

perforiance specs, wt- 0'11 design A controller without augmenting

integraqtorR. This vields some interesting results which are worth

commenrirg on. Neyr, we will augirent Integrators to the plant, and then

Io(+ at several designs using QingulAr value matching and one where we

arbltrar4 lv choose rF.

13.2.1 Unaugmented Design

Af a refresher, recall that here we must choose 'ji and r so that

-a! rc(Pr]' has a desirahle loop shape at low frequency. Also recall

th-at r' affects the shape while 11 simply raises or lowers the plots.

After several choices of F, It becomes obvious that little Improvement

over R E (I.e., the open-loop plant) is possible. It seems that any

artempt to raise the a plot (see Fig 13.1) Increases the bandwidth far
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beyond the desired 10 rad/sec. Therefore, the choice of F = B was made.
% %_.. p
. Since the open-loop plant had a maximum bandwidth greater than 10 rF.'

rad/sec, p was chosen to be greater than unity, in order to lower the

plots. The choice of p= 5 was made, which yields a maximum crossover
%.

of just under 9 rad/sec.

Now that pl and r have been selected, we can calculate the filter

gain matrix K. Doing this, and plotting a [C(DKf we can compare t1hese.-..

plots with those found In the previous step. This is shown in Fig 13.4.

The solid line plots are -- [C'r! (from here on called T FO) and the

dotted line plots are a [CW f1 (from here on called T). .
I''f KF

o A

-'0

-10 -AIL. J.1

- ,00 0. '" -1.,

Fig 13.4 Singular Values of TFOL and T KF Unaugmented Case

Note that there Is close agreement between the two sets of plots at low

frequency. Actually, there is a small mismatch between the g plots, but

". this should be expected since the loop gain is not high there, which is

% required for equalltv. At high frequency, where the singular values

become small, the plots diverge. Note that the crossover of TKF is Just

13-6
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above 10 rad/sec, which means we do not meet our bandwidth spec.

Technically, P should be increased slightly and the process repeated,

hut sinre we're close (and won't keep this design anyway), we'll proceed

with p 5.

Finally, notice that while we are below our robustness boundary at N..

high frequency, we are not even close to meeting our performance spec

(we still would not meet it even if we didn't require Integral action).

We should see the consequences of this when we finish the design and

look at tine responses.

Now that we have designed our full state filter, we must try to

recover this loop shape using the regulator. This requires selection of

H, p, and the recovery parameter q2 . For convenience, we will always

choose p = I in this section. Since our measured variables are also

those wo wish to control, P = C is the most logical choice for H, and we

will ma1' this choice throughout this section also. Since for recovery

we mnist choose

=II + C (13.11)
C

and since H C, we are already beginning to recover at q2 = 0. Only

the actual choice of q2 is left to be made. Without going through the

2.= 05
different choices, the value q2 = 10 yields excellent recovery, and the

plots of T (solid) versus GK (dotted) are shown in Fig 13.5. Notice

that the maximum bandwidth is slightly less than in the full state case,

hut iqs ri11 lust barely above 10 red/sec.

13-7
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480

'p0

Fig 13.5 Singular Values of T and CGK, Unaugmented Design
'p KF

Table 13.2 Data for the Unaugmente' Output Design

p- 5 ry = 
2  

= 10

zeosOP) -158.15 1 poles(filter) 2.2*=.'

-8.376.00 * 16.48

zeros(C4)K)= -2.68 -20.00
-8.3L :20.37

-19.23]

1 ~ 9.9 8] poles~regula ter) =--26.79 * J42.71_
- -52.49 * jPP.63

4.20 -1.19 -11
-18.17 55.81 -104.69

K = -9.92 -0.60
-1.19 10.49
0.0181 -0.333
0.1149 0.338

F215.1 -4.665 -7.895 -233.2 6.708 -2.554

231.5 3.723 -7.453 213.5 -2.554 6.869

7crosrK(s)1 -2.55 polesrR(s)] -27.45 14.O
-7.52 -52.6P 105.65
-19.55 -54. 1f
-19.99 -114.7

13-8 .-



Table 13.2 shows some of the interesting specifics about this

design. We will not make any comments on the various poles and zeros

here, since they wIll be commented on a great deal in the next design.
.,-. .. ...-

It is interesting to note that the only regulator gains that are getting

large are those in the first and fourth columns, which correspond to

those multiplying the response variables a and a response

The last and possibly most important thing we need to examine are

the system responses to given commands. The roll and sideslip responses

to a utit step command In roll angle (zero commanded sideslip) are shown

in Fig 13.6. Notice that both settle out to their commanded values in

about one second, the maximum overshoot in roll angle in about 177, and

the maximum sideslip angle is only about 0.05 degrees.I1 2

255 2 2. 3 5 
-.

Fig 13.6 Time Responses to a Roll Command, Unaugmented Design

Hopefully, you are slightly surprised. These responses are quite good,

yet the loop shapes of OFh are poor (don't meet performance specs). To

FWhat Is happering, let's reverse the command (command unit step

.siCeslp angle with zero cormanded roll). These responses Are shown in

13-9
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6.

% Fig 13.7. These are miserable. The sideslip angle response has a 77

steady state error, while the roll angle settles out at -0.7 degrees a

rather than the command zero.

IL

2 2_

0 ---- - - ISM

Fi 37Tm epnest ielpCmanUagetdDsg

siesi atti lgtcniiniaily u tl lutae h

Fg13.7. TieRsosstA ielpCmad nugmented Design

R iteemts ttpan so thas exmpe have winthgha verytigh In t lowF

F* Folowoinate the smnaidenlprcmadchanel.apea10,ze taugen co ankn

sfiegrpatoths Inflight odtioplnt The silly bumstildilustas the

pint. Thlerefo, ifow in roll com.an wThi small siei the "pal" we use~

13.2. Augmnted1esign
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to design several controllers for in the next subsections.

Fig 13.F Fingular Values of the Augm~ented Plant

13.2.2.1 Low and High Frequency Hatching

First, we will "go for It." That Is, we will choose rl so that we

get singular value matching at both low and high frequency, as detailed

In Chapter 11. To really see what happens here, we need to look at the -

g poles and zeros of each transfer function we produce throughout the

- design.

Aa refresher, to achieve high and low frequency matching we must

-choose r as

T T-l'(13.12)
'SC T(WC T I

*Adiustment of the scalar p so that the maximum bandwidth of T Fi s

r losuv t( 10 rad/sec produces a valuie of p' = 0.01. The plot of T is
FOL

*shown in F" g 13.9 for tbese choices. Note that all specs are met, and

the plor:; look like 1/-, except for a "rise" and a "dilp" near I red/sec.
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Fig 13.9 Singular Values of TF~ 1-i-Low Matching

This easily explained by examining the poles and zeros of C(Dr. They are

* -0.075 ]
'0.168 * JO.737

zeros(C(Dr) =-3.14 (13.13)
-19.96 -

-19.99 j

-0.036
.0.188 * 11.051.*p

-3.25
poles(C$P) =-20.0 (13.14)

-20.0
0.0 j
0.0

Obviously, the poles are just those of the plant plus the augmented

integrators. Examination of (13.13) and (13.14) shows thiat the poleF

and zeros of C(DT nearly "cancel" each other, except for the integrator

*poles and a mismatch in the compley pole-zero pair. The mismatch In the

U complex pairs Is why we see a rise and dip in Fig 13.9. The rise

- corresponds to the pole frequency of 1.067 rad/sec and the dip to the

'6 zero frequency of 0.756 rad/sec. The fact that only the Jntegratorc

effectively remain yields the overall I/s behav'ior of the singular valiu-
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plots.

Mrote thait this selJection for r yields a nomniu phase Ur. This

occurs because the plant is open-loop unstable and we are trying to V

invert the plant. Realize that plant Inversion is what we are asking k%

for since we want the singular values to be matched and look like I/s. .

* The Kalman filter can never be nonminImum phase. Therefore, we should

expect to see these zeros mirrored to their stable Images when we

compute OWKf

Nocw we'll compute Kf using the r and p we just chose. Doing this

and overlaying the plots In Fig 13.9 with those of 0MKf yields Fig

13. 10.

,20

10

rP9t~ 1W,'

Yilg 13.10 Singular Values of T and TKF Hi-Low Matching
Poll KF

Obviously, the two plots are nearly identical. The poles of CI)Y r?

*obviouti.,, the same as those of CIr, so all we need to look at Are the

%eros o CI?)Kf, given by

-0.07 4
-0.144 1 0.1

zeros(C(PKf) = -3.18 (13.15)
-20.00
-2n.02

hr4 13-13
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These are literally identical to those of (13.13), except that the

nonminimum phase complex pair in (13.13) is nearly m~irrored into the

left-half plane in (13.15). Obviously, this only slightly alters the

a-plots since the magnitude of right-half vs. left-half plane poles

V

* (zeros) is the same. Obviously, TK meets our specs.

Now the trouble begins. The next step Is to "close the loop" on

* the filter and compute the filter poles. The zeros of any system Are

Invariant under feedback, so that the zeros of the filter are given by

(13.15). The filter poles (poles of [A - fCI) are given by

-0.074 1
-0.184 * jO.732

-3.05
filter poles = -20.00 (13.16)- -

-20.08 j
-10.02 ±jl.41

Remember that these will be poles of the overall closed-loop systerm.

O)bviously, the complex poles and the pole near the origin are not at al'l

desirable. Since there are zeros very close to then, their residuals

* will be small (small contributions), but they will take a long time to

die out and the respovse Is very oscillatory. Ts this a fluke? No, not

really.

Looking back to Fig 9.2, we see that the closed-loop filter is ivst

M~ with unity feedbark Around it. Therefore, we car construct a

* "root-locus" usirF the polvcs and zeros of C4Kfto determine the filter

* poles. lnfortunitelv. a MTMO root-locuis does not follow all the rtiles

of a SISO root-locu,. ind It Is not worth going into the MIMO locus

here. The important point (cinv be made without the actual locus. Snoe

all ot the 7eros, HE, very close t(, the plant poles (except the two 7cros

at ',the A'ant pole . will go to the zeros and therefore will not move

* verv much (the oniv poles that move very far are due to the integrators,

1 3-14
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which go towards the zeros at 00). Therefore, the closed-loop filter

poles arc almost identical to the stable images of the open-loop plant

poles. In general, any time we choose r (and/or Kf) to invert the

plant, the poles and zeros on the filter locus will be close together

for each pole we try to invert. Therefore, even for a "low gain"

filter, the closed-loop filter poles will be very close to the

"inverted" open-loop poles (or their stable images). If the open-loop

Poles or their stable images are undesirable from a closed-loop

point-of-view, we should not try to invert them.

Just for fun, let's finish the design. Choosing q2  105 we get

the regulator poles

-7.72 i j15.49 P

regulator poles = -12.92 j J28.77 "
-20.22 * J5.07 (13.17)

-31.6 1  11.7 j

which, even though some are lightly damped, are fast enough to present

no problem. The singular values of T and GK are shown in Fig 13.11,

"" -and shou a high degree of recovery.

} 3 I iiil .:.:
610

Fig, 13.11 Singular Values of T and CK, HI-Low Matching
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* Actually, the recovery parameter q2 would have to be increased If

excellent recovery vas desired, but in this case the results are onh'

slightly altered by doing so. Joining the regulator and filter together

produces an LQC compensator with poles and zeros

F~ -0.074 2
-0.105 * JO. 704

zeros[K(s)] -3.18 (13. 18)
-20.00
-20.01 j

-7.43 * J19.09]
-11.26 * J32.85

polesrK(s)] -25.47 ± J9.37 j(13.19)
-38.65 ± j17 .0

L 0.0 j
Closing the loop on our overall system, we get the closed-loop zeros and

poles F 158. 15
-0.074

zeros (closed-loop) L.-105 * JO.704] (13.20)

poles(closed-loop) =fpoles of regulator (Eq (13.17))
plus poles of filter (Eq (13.16)) 1 (13.21)

Now, we look at the punchline. Fig 13.12 shows the time responses

of and to a unit step -command. While the sideslip response Is

excellent, the roll response is highly oscillatory and takes a long time

* to settle down. fbviously, a poor design.
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*Fig 13.12 Time Resonses for a Roll Command, Hi-Low Matching

13.2.2.2 Low Frequency Matching

Since high and low frequency mAtching did not work we]], let's try

J~ust low frequency matching. To accomplish this, we choose

r =(13.22)

and = nl.01. The resulting zero of CIT Is simply the transmission zero . -

* of the pliant (-158.15), so that this choice of I' does not try to invert

the plant. Computing %Kf using this pi and r, and compiting the

,inFOar values of T FOL and T,,, produces the plots in Fig 13.13 (the

'L plots are solid lines).
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'00

-1001

MI~tVC,(S)

Fig 13.13 Singular Values of T anf T ,Low Matching
FOL KF'

As expected, the plots match well where the gain is large, but at high .

frequency TK levels out from T since T has only a 1-pole roll-c'ff.
KFFOL KF -~.

This is also seen by looking at the zeros of CDKfo shown in Table 13.3.

Table 13.3 Data for Low Freauency Matching, Output Design -
-1 IT 2 16

p=0.01 r [ (o) 0]q 1

poles(filter) 1 F 0.16 * JO.25

zeros(CTr) = (-158.15 1-3.78 * J6.56
-0.32
-8.20_

zerosCMK = -0.19 * JO.14 L -19.96

f -4.61 * j6.56 -20.00-20.0
-20.04 poles(regulator) -10.24 ± j2l.7

-25.33 + J8.43I
* I-0.121 -2.756 -4.6T 1.
*0.044 0.979 71.62 -21.35 T

0.500 -0.003 -21.35 73.16

K = -0.466 83.911 737.28 685.13
-0.160 0.266 K -42:56 36.43

C
-0.003 12.956 -73.42 -68.28
-0.120 -2.719 -735.65 677.10
0.044 0.966 139.6? -77.78...L-76.76 145. 21j

zeros[K(s)) 0. Fo19 ± j0. 147
-4.00 ± J2.99L - z~7 13-18
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Notice that while r does not try to invert the plant, the resulting

value of Kf produces a pair of complex zeros near the imaginary Axis.

This should signal potential problems. When we close the filter loop,

the resulting poles are shown in Table 13.3. Note that there is a low

frequency, poorly damped complex pair as well as a low frequency real

pole.

Setting q 2  106 produces the recovery plot In Fig 13.14. TKF

plots are shown as solid lines, while GK plots are dashed.

120~
60 - .

r~rou[cv (R/S). '."

~~~~~Fig 13.14 Singular Values of TK and OK, Low Matching -'"""-

. Recovery is excellent at frequencies up to crossover, then additional

i.? -" roll-off is added by the LQG compensator. The regulator poles, _.-

compensa-tor zeros, and gain matrices are also shown in Table 13.3.2.2

Finally, the time responses due to step commands in roll and sidesllp -....

....- .are shown i Figs 13.15 sad 13.16, respectively. The roil-to-roll -

' " cormmand response has a large overshoot, but is otherwise well behaved. .'""

The sidelp-to-roll command response, on the other hand, is small but"i"."

~~~takes a long time to settle. The sideslip command responses are -.'

013-19

-" .. . . . . . . . . . . .



terrible, but since a sideslip command controller is not our objective

this may not be important. Still, we can do better.

od

-41

"" ' .7 - - - -- - .. ]. - - -- -4..

-2 .4 .. - . .. LL U .,LJ LA -L ,-.k

0 5 ' 2 25 3% 1 5
rr (SEC)

Fig 13.15 Time Responses for a Roll Command, Low Matchng

this wemust.choos

1 0. -

Alt- -o-

• - '. ~* . -,' ,

"6 --- -... . . --- " "-

.5.

- 0 .55 25 35 5 5 ' * -.'%

hLuf (SEC)

Fig 13.16 Time Responses for a Sideslip Command, Low Matching .- ..
2.-',

*' 13.2.2.3 High Frequency Matching ''"

~~~Now we will try using only high frequency matching. To accomplish.,,,

this, we must choose

: ~~13-20-""-
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r(13.23) ::

p pp M

where r is arbitrary but non-zero. For convenience, rwas chosen to

be T hoosing p = 0.1 produces a bandwidth of just under 10 rad/sec, I

as show' in the solid curves in Fig 13.17. Obviously, we do get high

frequency matching, and our specs are met.

''g

Fig 13.17 Singular Values of T and TKF Hi Matching

13-21
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Table 13.4 Data for High Frequency Matching, Output Design

p 1 r= 2 I T cT)- 1 
1T 2 =106

1. C (C

zeros(cuF) = 0.126 J9.34 oe~itr 15
1.230 *J5.58j poefitr -15*J30

-21.27 -3.62 * J7.15
-24.27 .- 4.18

-10.35
zeros(CU4~ F-1.84 ±+ J2.04 -19.74

-4.56 * J4.57 -19.97

L -20.15 J poles(regulator) =same as in
Table 13.3

S1.977 -2.469]
2.469 1.977

8.302 -0.605
K f -17 .222 92.111 K =same as in Table 13.3

1-29.938 -4.416

1-0.605 13.907
1.641 -2.427
2.455 1.686J

zerosfK(s)j -168 *11.51
-4.07 ±J3.58

-20.01 9

-20.04

Table 13.4 shows the zeros of C(Dr for this case. Here we see two

rIght-half plane complex pairs, both of which are lightly damped and at

* high frequency. The pair at (0.126 + J9.338) looks like a real probler,

* since it is near the imaginary axis. However, it Is at high frequency

(near the crossover region) and, as may be seen in Fig 13.17, is

* predominantly affecting a plot (the "dip" in C;) Therefore, when w~e

use this choice of P and r, the resulting singular values plots of UKW

(shown as dotted lines in Fig 13.17) do not have this dip. This Is rlUiv

*easy to see by noticing the zeros of CIDKf shown in Table 13.4. Hlere.,

* both troublesome complex pairs of zeros are "moved" to much better

locations, since T approximates T only where the gains of T areFOL KF FOT.

high.
13-22
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The resulting filter poles are also shown in Table 13.4. These are

2 6
well behaved with damping ratios near 0.5. Choosing q~ 10, we get

the recovery plot shown In Fig 13.lP, where the solid lines are TTF

KFF

'00

in Fig 13.1iglrVle fT n K iMthn

hk.F

AganreovryIsexellntan te anwith asben1owre t21

rad~~~~~~~~~sec~~~~ ~ .vtc htT atal iltdtebnwdhse) h
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Tfl( (SEC)

Fig 13.19 Time Responses for a Roll Command, Hi Matching

The overshoot on the roll response is large (55%), but could be reduced

using a prefilter. This design is not bad. However, it may seem

pointless to go through the high frequency matching technique when it is

not really possible to get TFOL and TKF to match at high frequency.

Therefore, we will try one more choice, which will produce literally the . -

same results as this one, but which is a more logical choice for r.

13.2.2.4 "Arbitrary" ' Selection

As this is the design we will select as the "best," more details ."-

will be shown throughout the design process. Tn this case, we will make

the "easiest" and most common selection for F, that is ,r = B. Looking

back to Fig 13.8, notice that the singular values of CB for our

augmented system are not that bad; that is, by increasing the gain

(decreasing p) we can increase the bandwidth and easily meet our specs.

Typically, this is what a designer would choose first, sin:e it requ~tre-.,

no real trial-and-error selection for F. *'"

First, we will choose r B (remember that the h here is the

13-24
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augmented system's input matrix) and P. 0.2. Using these values to

compute Kf9 we get the plots of TFO and TF shownl in Fig 13.20 (TO in

solid lines).

.100

Fig 13.20 Singular Values of TFO and TKF r* R , p =0.2

Notice that even though TF0 has a maximum crossover frequency below 10

rad/sec, T exceeds It:. Since T doesn't satisfy our bandwidthKF K-F

spec, we miust Increase 1j. Increa~lng 1i to 0.3 generates the plots of

T and T shown in Fig 13.21. The maximum crossover is still just
FOL KF

above 10 rad/sec, but when we recover this loop shape the bandwidth

should reduce. The increase in p from 0.2 to 0.3 causes a roughly 20%

decrease In the Individual elemrents of Kthus illustrating the benefit

of using less control power.
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Fig 13.21 Singular Values of TFO and T F B,j = 0.3
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Table 13.5 Data for Augmented =B Output Design

p 0.3 F B - 106

zeros(C(Dr) =f-158.15

ples(filter) = -1.92 *J2.66zeos~f) = -. 9 1.46 -3.31 ±15.89

40 341]-.4L 2.0 -19.98
-20.02

poles(regulator) same as in
Table 13.3

0.818 -1.633
1.633 0.818

= 6.547 -1.221
K f -19.074 68.314 K =same as in Table 13.3

-22.491 
2.677

-1.221 11.637
0.817 -1.620

L 1.628 0.804

pzerosrK(s)l -1.72 1 1.16 poles[K(s)1 -9.00 ±j25.P',
-3.56 t 12.73 -14.10 *J44.2?

- -20.00 -29.85 ± j12.7
-20.00 -50.00 *123.10,

0.0
0.0
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The zeros of MrP and C(DK for our choices of p~ and r are shown in .::
f

Table 13.5. All of the zeros of M~K are in "desirable" locations and
f . .

vi 'nave gooe eamping. Closing the filter loop produces the filter poles

% shown In Table 13.5. These are also well behaved, so we'll proceed with

the recoverv. Several choices of q2 were made, ranging from 0 to 108.

Bv looking at both the recovery plots and the time responses a good

r ~ value (,f q2 may Le chosen. For q 2 = 106, which was the final selection,

the recovery plots Pre shown in Fig 13.22. The plot of C'K (shown as

dashed lines) does meet all of our specs. The resulting filter poles,

compensator poles and zeros, and gain matrices K and K are shown Inc f

Table 13.5.

2004
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values of the filter return difference In Fig 13.23 are always at or

above 0 dB, as guaranteed by the Kalman Equality. Similarly, the plots 4

in Fig 13.24 never go below -6 dB, which again is guaranteed.

'60i

Ic'' 'o 6o

Fig0 132 iglr auso TK r B .

360

132

7 %
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To check for robustness in our filter, we compare the plots of k~ (w)
mi

and 9fT + (TYF) ~1 In Fig 13.25. Obviously, k (w) is less than 0at

all freq~uencies, so we pass the test.

30

20

000' 01), 0, 10 '00

Fig 13.25 Singular Values of and g[T + KF B, p 0.3

Now let's examine our actual loop transfer function, CK. Fig 13.26

shows a corparison of Z~ (w) and ofT + (CR) )

140

20

'00

20L -
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Since k (w) is below Q[I + (GK) - I at all frequencies, we are

guaranteed that the closed-loop system will remain stable in the face of

all output uncertainties bounded by £ (actually, 'll bounded by
-l m

VfI + (GK)-I). From Fig 13.26 and a plot of Of! + GK] (not shown), ,.

we can compute the MIMO gain and phase margins of our system. These were

found to be

-5.26 dB < GM 6.58 dB (1?.?4)

-30.80 s PM - 30.80 ( .. 75)

If these are considered to be too low, then q would need to be

increased.

Now let's examine our time responses. Fig 13.27 shows the response

of sideslip and roll angle to a unit step roll command. We can see that

we have perfect staedy-state tracking, a settling time In both responses

of about 1.5 seconds, a maximum overshoot of 50% in our roll response,

and a maximum sideslip angle of less than 0.1 degrees. The

corresponding control histories are shown in Figs 13.28 and 13.29. 'ig

13.28 shows a maximum elevon deflection of -2.2 degrees and FIg 13.29

shows a maximum rudder deflection of -1.2 degrees. The "bad" aspects of

these responses are relatively high surface deflection rates and a large

overshoot in roll respons,. Let's try to fix these. ., .'-.

-7., .- . %
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to slow down our responses and decrease the overshoot. The roll angle
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response te a unit step roll command (now r0 in Fig 13.30) is shown in

Fig 13.?]. Now we can see that the maximum overshoot has been reduced

to roughly 6% with little increase in settling time. The sideslip

response is shown in Fig 13.32, which shows excellent decoupling with a

maximum deviation of less than 0.04 degrees. The elevon surface

deflection is shown in Fig 13.33, and shows a maximum deflection of only

-0.26 degrees. The maximum rate is less than 4 deg/sec. Fig 13.34

shows the rudder deflection, which has a maximum deflection of about 0.1

degrees, and a maximum rate of 2 deg/sec. All of these figures are hi

reasonable and well withing the limits of the aircraft. This was

considered to be a very good controller design, with excellent

robustness properties.

- - -- .5

6- °. --

... ....-...

Fig 13.31 Roll Response to a Prefiltered Roll Command
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Fig 13.32 Sideslip Response to a Prefitered Roll Command
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Fig 13.33 Elevon Surface Deflection due to a PreflItered Roll Commiand
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Fig 13.34 Rudder Surface Deflection due to a Prefiltered Roll Command

13.3 Design With Input Uncertainties

Now we will design two controllers for the case where we break the

loop ar the input to our plant. As a reminder, we said that we will

assume that our input multiplicative uncertainties are the same as those

at the output; therefore, t (w) is defined by Fig 13.2 for this case.

Ve will also assume that out performance requirements are the same here

as they were at the output, so that Fig 13.3 shows the barriers our

input loop transfer functions (T~oL, TLQ, and KG) must not intersect.

We will make some comments on the meaning and validity of our

performance requirements in the upcoming example.

13.3.1 Low Frequency Matching

First, we will look at a design where we have augmented integrators

at the plant output and choose H to achieve low frequency matching.

This rcruires H to be chosen as

H (H1  G(O) (13.27)

13-35
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where H is arbitrary. Since we can choose HI, and it weights the plant

states, we will choose
-S-

0 0 0 0.05 0 0

0.5 0 0 0 0 0 (

so that roll and sideslip are regulated well. The strange choice of

values in (13.28) comes from two factors. First, sideslip was weighted

10 times as heavily as roll, since sideslip seems to be predominantlv

controlled by the minimum singular value in the output cases. Secondly,

the 0.05 value for roll weighting was chosen so that when B

postmultiplies H to form TROL the product of H and B will yield a

unity value (since B has 20's in it). Adjustment of p so that the

largest singular value of TROL (here defined as ClimB ]) crosses 0 dB

near 10 rad/sec yields p = 0.01. The resulting plot of T is shown as
ROL

solid curves in Fig 13.35.

30 U ".9 -. '

ow,~~~~ ,0 0, 1 1, o'

*Fig 13.35 Singular Values of T and T ,Low Matching
ROL L
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BothI our performance and robustness spc are met by T O'so we can use

these choices of p and 11 to calculate K .Doing so produces the plots4

of T (defined as CK 013) shown as dotted lines in Fig 13.35. T
LO c LQ

obviously still meets the specs. Table 13.6 shows the zeros of H4DB and

those of K 0B for this design. Notice that two low frequency zeros

* appear. Luckily, the resulting regulator poles (also shown In Table

13.6) almost perfectly cancel these, so that their contribution may be

insignificant If a compensator zero (zero of K(s)) is also there.

Table 13.6 Data for Low Frequency Matching, Input Design

P=0.01 H = H1  G(O) -1 q 06

7 2
=1

zeros(H(B) 0.00713, poles~regulator) = -0.00713
-0.204 -0.203
-158.15 -6.19 :L J6.10

- -6.95 * 18.20
c L -20. 72

-8.8P~ oles(filter) -10.24 kJ17

-18.95 -17.02 ±J39.13
-19.32 -25.33 &± J8.43

L-41.26 ± J16.11

3.148 4.286 TF1. 31xl10.9xl
-0.066 0.033 7.03x104  1.llxlo

-0.534 -0.714 -1. 77x10 -4.58x103
23K = -0.429 0.246 K% 2. 02x10 4.38x103

f ~ 33
C 0.513 0.079 1. 81x10 -4.43x103

3 3
_0.079 0.721 2. 63xl0 4.23x1%
2.918 -0.237 5. 12xl0 2741

-0.001 -0.001 2.74x10O 9.36x10'

-0 19
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Now we must recover TO by designing our filter. For convenience,

we choose r - B so that our recovery Is starting out In the right

direction (remember that we must choose Of rrT+ q2 TBBT Choosing a

different r has little effect on the overall results. Choosing

q2 _ 106 produces the KG plots shown in Fig 13.36 (TLo plots are solid

lines, KG dashed). Notice that our specs are met by KG. Are these

specs truly meaningful?

.30

-12 -

Fig 13.36 Singular Values of T and KC, Low Matching
LQ

For loop-breaking at the input, the answer may be, "not really."

The robustness requirements definitely do make sense, since they

represent Input multiplicative perturbations. However, the performaiuce

requirements are Intended to reflect command following requirements.

Ut o

That is, we wish our outputs to follow our commands. This requires GY.

to be large at our command frequencies, as shown in Chapter 4. Notice

that we are looking at KG in our input designs, which Is not equal to

GK, In general. Therefore, requiring KG to be large at low frequency

13-38
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may not give us good command following, If the corresponding GK does not

meet the specs. The whole problem here is that our robustness

requireirents are reflected to the plant Input, while our performance

requirements naturally reflect to the output. The singular value Is ~.

j inadequi.te for the "multiple location uncertainties" just described.

Ler's look at GY for this example, which is shown In Fig 13.37. Ol

.5so

S.7

S.0

IV

Fig 13.37 Singular Values of GK, Low Matching

Notice rhat GK does not meet the performance specs. We should see some

effects from this in our system time responses. Finishing the design

giveb Ls the remaining data in Table 13.6. Note that while the .

regulator (and thus closed-loop) pole at -0.00713 is almost exactly

cancelled by a zero at -0.00712, the poe at -0.201 Is "missed" by the

zero at -0.193, so we may expect some slow transients.
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Filg 13.39 Time Responses to a Sideslip Command, Low Marching

13.3.2 t Arbitrarv" P4 Selection

heeIn this final example, we will again augment with integrators, but

heewe wil~l choose H arbitrarily. Again, since the singular value

plots cf C4DB are not bad, and since we want to control our measured

variables, we will choose P C (the augmented C matrix, that is).

ChoosIiul p =I produces the plot of T RLshown in Fig 13.40 (shown as

solid lines). The specs are met, but the maximum bandwidth is below 10

radlsec. This is deliberate; using this p and H produces the plots of

T also shown In Fig 13.4(0, for which the maximum crossover frequency
LO

is very close to 10 rad/sec.

13-41
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Fig 13.40 Singular Values of T arnd T1  H =C
ROT, .0

-Obviously, this was a result of trial-and-error, not gifted Insight.

*The zeros of ROB and K c (B are shown in Table 13.7, as well as the

resulting regulator poles. Notice that these are In desirable

locations.
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Table 13.7 Data for Augmented 11= C Input Design

p IHl ~2 106

7erns(H4)B) =r-i5P.15 1
poles(regulator) = -1.76 ±J2.06

I-2.72 J4.811
7eros(K c M) -1.64 * JO.93 -2.79

-. 4 +t J2.72 -5.88
-20.00 -20.00
-20.01 -20.00 j

0.941 -0.053 -0.255 -0.340 -0.370 -0.059 -0.787 0.616]

0.492 0.031 -0.227 0.224 -0.059 0.366 0.616 0.7871 OL

K =same as in Table 13.6

poles(filter) = same as in Table 13.6

?,rosrK(s)] -1.50 J 1.721 poles[K(s)J = -9.05 1 J24.77
-3.14 ±j2.23' -14.66 £ J42.87

-20.00 1-29.60 ± J11.9 1
-20.00 j-47.89 *J21.65j

200~

rFig 11.41 Singular Values o~f T T. and KG, H C
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Fig 13.41 shows the recovery plots. The solid lines are TLQ, -d

the dashed lines are KC. Obviously, our specs are met. Actually, the

maximum bandwidth is only 8 rad/sec, so p could be decreased if so

desired. Looking at a plot of GK as shown in Fig 13.42, we see that It --

also has high gain at low frequency, so we don't expect the problens we '

saw in the last design. The remaining data for this example is given in

Table 13.7.

0o

4.. 
- ' % o

,- 

00

i 2 000 001 o' 00 ' O o O M
, - . ' ,

Fig 13.42 Singular Values of GK, H = C

The roll and sideslip responses to a roll command are shown in Fig

13.43. Other than a large overshoot in roll, they are very nice. Fig

13.44 shows the responses to a sideslip command. The roll response is

quite large, but considerably better than before.
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2 0

0 5 2 2 5 3 35 45
1L(StC)

Fig 13.43 Time Responses to a Roll Command, H C

.%

00

i-i

We chose this as our "best" case. To reduce the overshoot In roll

"n Fig 13.43, a prefilter aF given In (13.26) was added to the system.

The resuiitlng responses are shown In Fig 13.45, which show a reduction

in overshoot to 12'A. The corresponding surface deflections are shown in

13-45
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Fig 13.46, which are quite reasonable for the aircraft. Finally, Fig

-. 13.47 shows a comparison of (w) and 2[I + (KC)-1, which clearly
m

passes the robustness test. The corresponding gain and phase margins

"- are very close to those given in the output design best case (equarins

(13.24) and (13.25)).

2 

0

..:::".. .... :

-s - -""W

2 - - -

0 5 I 5 2 25 3 35 4 4 'C.-t (SEC)

- Fig 13.45 Time Responses to a Prefiltered Roll Command, H C

'2

": o '--.-" 
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Fig 13.46 Control Surface Deflections due to a Preft.Lr-red Roll Conumand
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Thiseo conples ore expero in e "udeiable" pne locateins.t Coupleding

tos Whas- to so imtat tuiin loKC ato bot tierandorneqbueny doesinot

severato whlpointswr thde. dersign Oerall, the method iil exreel

approimtewr pand inersio to useraduc williroduc excellhaest relsi

tdesigner mae awreofthns dand on the foetod. sas ahc fin uil

Iversienon oes o therse deins "udsoule" cosidered loatinalCupe

ifoihrainwhl dtoing the teyin arvesiml, thelmettratesthetmeteod

Actual!.,, much better designs are possible, and we, the authors,

challence vcu to better them.
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11'. SlVMARY AND CONCLUSIONS

In these notes, w hbave attempted to provide a fairly comprehensive

treatment of the LOC/LTR methodology. Chapter 2 reviewed some of the

necessary mathematics and developed some of the required tools from

multivariable linear systems theory. Chapter 3 then introduced the basic

ideas behind multivarlable robustness analysis, in bot the frequency and -'-'-.

time dorains. Chapters 4 nd 5 presented the concepts of using singular

values tc define a good multivariable loop shape, and discussed some of

the limitations a designer must face in trying to achieve a given loop

shape. The remaining chapters concentrate on developing the LOG/LTR

method. After a brief review of optimal control in Chapter 6, Chapter 7

proves that al] Linear Cuadratic Regulators have guaranteed minimum gain

-,nd phasr- margins of Ir -( ' <- and -60' < PM < 60, respectively.

Unfortunatelv, since we can never measure all of our states in practice,

and sinc- the full-state feedback controller is unrealistie in the sense

rhst it violates the Bode-!orowitz condition, we find that we must design

an obaerver to estimate our states. Ch.pter 8 shows that a general

observer has no guaranteed margins, bur by cleverly choosing our estimator

welthts ve can asymptoticallv recover our full-state margins. Using a

Kalmar! 141ter for the observer, Chapters 0 and 10 formalize this

procedure, to produce the L.OC/LTR methodology. Chapter 11 then provides

some usttu' tricks for producing desired loop shapes, while Chapter 1

, orjrali/: the method mathematically and shows it Is a specialized

. salution ro an / optimization problem. Chapter !3 then presents a

'eta .lec example for an aircraft.
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Now let's examine some of the advantages and limitations of the %

method. On the advantages side, the method is very powerful yet ea-4lv

finds (due to readily available computer software) the solution to an

important optimizatlon problem. From a practical viewpoint, the r'4ethod a...

allows performance requirerents and uncertainty information to be

specified in the frequency domain. The resulting controller is

guaranteed to remain stable for all possible uncertainties within te.

user-defined set. The trade-offs the designer must make along the w;..

are easily visible, and since the calculations are actually done In the

time domain, information on pole-zero locations is eisy to obtain.

The limitations of the method hopefully have been highlighted

throughout the chapters. Many of them stem from the inherent

limitations of multivariable systems. First, through the exam ple, we

have seen that lightly damped/low frequency poles or zeros in the plant

may cause problems with the closed-loop system response. The designer

must be aware of what random use of the method will do under these

conditions. As pointed out in [14-1], although the method is applicAHle

to nonminimum phase plants full state recovery is not possible. Tho

loop transfer function G(s) will not converge to the full. state loo-

transfer function, rather, it will converge to the solution of a T..,/12

optimization problem. One of the biggest limitations of LO/I.TP as it

has been developed so far is that all uncertainties and performance

requirements must be reflected to one point in the system, whereas in

reality uncertainties may enter the system In different ways at various

points. Additionally, performance requirements are generally readily

modeled at the plant output. Also, the frequency domain does not jird -"'"':

e 14-2
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itself to real parameter variations using the singular value. These

limitations could be overcome by using the structured singular value

which .n]ows mutltiple uncertainties rather than the singular value.

Infortuotely, the LQC/.TR m~ethod has not been extended te uising the

structured singular value (it may be possible to do so).

lo( wrap things up, we would like to mention some other technioues to m. ..."

design P robust multivarlable controller. This list is hv no means

comprehensive. One moethod, developed in Ref 14-21, allows stable

factor uncertainties and uses a factorization approach to synthesize a

robust tontroller. More on the factorization approach may be found in

the e.cellent book by Vidyasagar [14-31. Psn Iterative method using an

LO, ferrviation is presented in Ref 114-41 to design robust controllers

when urcertaintles in the ,,tare, input, and measurement distribution

matrice are present. Vncertainties are expressed In terms of interval

matrices in Ref 114-51, wbich then develops an iterative solution

.cher2e. Quantitative feedback theory Is used to shape loop

trans*,ions in Pef [14-61, where uncertainties and performance

specifications are transformed into templates that are used in

coniunccion with Nichols ebarts.

The methods in the previous paragraph deal primarily with

uncertainties that are represented as real parameter variations.

Arcther Proup of methods primarily using norm-bounded uncertainties are

based on formal optimization procedures. For example, L /I'
2 2

optiir.i t-lon (which we have not fully discussed in this report) can be

used t( recover the full state loop transfer function. The advantage of

.-uch an apprPAch Is that the controller uses lower goins (thus, lower

Actuator power) as opposed to the high pains obtained throuph LOG/AT'P.

14-3
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A detailed description of this particular optimization problem i.- tl1,r

subject of upcoming papers by the authors. Another control system desipr

method based upon -/F-x optimization Is well described in~ 114-71 ane its

references. A new technique, infornwa11y called "u-sviithesis" (also

discussed in 114-71) by Doyle, may bridge the gap by allowing multiple

uncertainties as well as real and norm-bounded uncertainty

become involved In this growing area of research.

representations.~~~~~~~ ~0':W Weecu-eyutoAaieteemthd cu~l
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